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ABSTRACT

The problem of scattering of electromagnetic waves from a
perfectly electrically conducting (PEC) half-ylane is a classical
problem in the field of electromagnetics and is the basis of the
GTD (geometrical theory of diffraction). The application of this
theory to modern aerospace structures is hampered due to the
presence of media discontinuities which alter the scattering
behavior. Therefore, the study of diffraction in the presence of
such discontinuities Is an important prerequisite to applying the
GTD to practical problems. Two related problems are considered in
this study which involve planar media discontinuities. The first
configuration concerns a planar interface between two semi-infinite,
homogeneous media with a PEC half-plane covering half of the
interface. The second configuration concerns a dielectric slab
embedded in a contrasting medium. On the upper surface of the slab
resides a PEC half-plane. Both structures are assumed to be excited
by a transverse magnetic plane wave.

The boundary value problems are structured as integral equations

involving the electric field which is tangential to the interface.
The integral equations are Fourier transformed to create Wiener-Hope
equations which are then solved. The process of factorization is /
performed using a formal integral factorization which is converted

into a form that is amenable to numerical evaluation. The solution
is structured as a radiation integral and is evaluated asymptotically
to arrive at the far field ray-optic contributors.

Data is presented for the interface problem to exhibit
distinctive properties of the solution. Sample cases of practical
interest are given. The data is considered in the light of present
theory concerning wave structure about a dielectric interface and
an analysis of the significant features of the data is conducted.
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CHAPTER I

INTRODUCTION

The objective of this study is the solution of two related prob-

lems concerning the diffraction of time-harmonic, electromagnetic, plane

waves. The first problem deals with the geometry given in Figure 1.1 and

is henceforth referred to as the interface problem. As seen in the fig-

ure, two half-spaces are separated by a planar interface which is coin-

cident with the x'-z' plane. On the interface is a perfectly electrically

conducting (FEC), infinitely thin half-plane. The half-plane lies in the

plane y' - 0 and extends along the positive x' direction from an edge

which is coincident with the z' axis. An incident plane wave propagating

strictly in the x'-y' plane in medium 1 (characterized by constitutive

parameters (1l, i)) impinges on the half-plane. There is assumed to be no

variation of fields in the z' direction, hence the problem is two-dimen-

sional.
The second problem, referred to as the slab problem, consists of the

above half-plane residing on a dielectric slab characterized by (4,C)

which is in turn imbedded in another medium (U',el) as shown in Fig-

ure 1.2.

Aside from the academic interest of studying such configurations,

they resemble or model junctions involving composite materials such as

I1

__ _ _ _ _ _ __ _ _ _ _ _
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occur in modern aerospace structures. Therefore diffraction from such

planar composite structures is of practical interest. The first prob-

lem is a fundamental building block toward solving and interpreting more

complicated diffraction problems involving media interfaces. The second

structure serves as a canonical problem modeling a lapped-junction between

a metallic and a composite sheet. It is desirable to be able to ana-

lyze these structures using the geometrical theory of diffraction (GTD),

but no diffraction coefficients are available for either of them. As a

result, scattering problems involving these canonical structures cannot

be modeled using the GTD at present. One purpose of this study is to

solve these problems in an asymptotic limit and extract the ray consti-

tuents of the solution in order to derive the correct diffraction coef-

ficients for GTD modeling of composite/metal junctions.

The scope of study of the problem geometries is as follows. For

the interface problem the equations are formulated for four separate

cases: a TM (transverse magnetic) polarized incident plane vave with the

integral equations formulated first over the PEC screen and then over the

remaining (aperture) portion of the interface plane and a TE (transverse

electric) polarized incident wave again formulated over each half of the

interface plane. The case of the TM wave formulated over the aperture is

developed in full detail from the integral equation formulation to the

asymptotic analysis of the resulting radiation integrals. The other cases

can be developed in a like manner and the similarity of the analysis is

indicated. The interface problem is handled in full generality with the

.. ..

, 1.
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constitutive parameters of the media allowed to be independent and lossy

(though constrained to be passive). In the slab problem, only the TM in-

cident wave is considered with the integral equation formulated over the

PEC screen. The media are assumed to be lossless with the permeabilities

equal and the permittivity of the slab greater than that of the surround-

ing medium.

The solution of diffraction from a half-plane can be traced back to

the problem of scattering from a half-plane in a homogeneous medium which

was solved by Somerfeld (1896). Over the years this problem has been

treated from a number of points of view. The application of the Wiener-

Hopf technique to the half-plane problem is described in Noble (1958).

The Wiener-Hopf approach was developed to deal with a class of integral

equations on a semi-infinite domain and is a special case of the Riemann-

Hilbert problem (Carrier, Krook and Pearson (1966)). It was applied to

diffraction problems by J. Schwinger and E. T. Copson. Application of

the Wiener-Hopf technique has been the principal subject of several books

(Noble (1958), Mittra and Lee (1971), Weinstein (1969)). In the Sommer-

feld half-plane problem, the diffracted fields are couched in the form ofUa Fourier inversion integral which can be computed as Fresnel integrals
or approximated asymptotically as rays. This ray-optic result was uti-

lized by Keller (1957,1962) to formulate a high frequency electromagnetic

scattering theory which he called the geometrical theory of diffraction

(GTD). The GTD has been extensively developed by others (see Hansen

(1981) for a survey). The solutions of various canonical problems are
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collected in the GTD and one subsequently models scattering from complex

structures by isolating effects (localization) and synthesizing an approx-

imate response from the canonical building blocks. Each new solution ex-

tends the capability of the theory, and the solutions presented here are

intended to add tw new canonical structures to those available for such

ray solutions.

The Wiener-Hopf technique is used in this research since it is appli-

cable to a planar geometry which leads to an integral equation on a semi-

infinite domain, and it yields exact results. The difficulty in Wiener-

Hopf analysis arises in performing the required factorization and deco.-

position steps. Therefore, any new factorization is of interest as it

increases the collection of known factorizations. The interface problem

has been addressed by several authors and the required factorization was

not found to be available. A reduced form of the interface problem invol-

ving wave propagation across a seashore was solved by Clemmow (1966),

Bazar and Karp (1962), Heins and Feshbach (1954), and others. Recogniz-

ing that a formal factorization integral exists in certain cases, several

authors have performed an analysis of problems closely related to the in-

terface problem. An analysis by Heitman and van den Berg (1975) resulted

in a numerical evaluation of the factorization integral and did not attempt

to examine the asymptotic field behavior. A recent analysis by Sunahara

and Sekiguchi (1981) considered a closely related problem. However, their

solution breaks down as the geometry limits into the interface problem.

Part of the purpose of this study is to develop an efficient integral
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factorization which yields all the analytical properties of the factor-

ization and is easy to evaluate numerically. This represents a natural

extention of the application of the Wiener-Hopf procedure from problems

where the analytical steps required can be performed and the results given

in terms of known functions to problems which do not yield such closed

form or determinate solutions.

I
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CHAPTER II

ANALYTICAL PRELIMINARIES

2.1 Notation

The purpose of this chapter is to summarize the fundamental mathe-

matical tools required for the solution of the problems of interest. It

is intended as a reference for the remainder of this work. Notation and

conventions are established in this chapter for the rest of the volume.

All configurations are assumed to be strictly two-dimensional (no varia-

tion along the z direction). The fundamental time convention used is

jWt
e , which is suppressed. As a result, Maxwell's equations take the

form:

- q/E (2.1.l.a)

X e - -m - jwuh (2.1.1.b)

.(Uih) 0 (2.l.l.)

-0. 4.x h - + Jee (2.l.l.d)

where e is the electric field, h is the magnetic field, q is the electric

charge density, j is the electric current density and m is the magnetic

current density.

The media to be considered are passive and, in general, lossy. They

9

I-,-vo AG9i s,
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can be characterized by complex constitutive parameters (p,E) which are

complex numbers in the fourth quadrant (positive real part and nonpositive

imaginary part). Also, the complex wave numbers arp written as:

k - kr-jk i .where kr > 0 and ki >0.

Wiener-Hopf analysis, which is used in the solution of the problems

to be considered, is performed in the generalized Fourier transform (spec-

tral) domain. For this analysis we choose the following Fourier transform

pair:I

F(kx) - F{f(x)} CO f(xO) e +jkx0 dx0  (2.1.2.a)

0

-O+jc -jk x

f(x) - F {F(k x)} 4 J F(k x ) e dk (2.1.2.b)x dkk x21..b

Here the transform variable is allowed to be complex. The constant c

j is suitably chosen for convergence of the Fourier inversion integral in

analogy to the Bromwich contour of the Laplace transform (Mittra and Lee

(1971a)).

Various methods are available for arriving at the Wiener-Hopf equa-

tion for a problem. Because of the pervasiveness of the integral equa-

tion formulation for electromagnetic problems, we choose to use this

type of equation as the starting point in formulating the Wiener-Hopf

1Throughout this work we use capitalized function names to denote

the spectral (Fourier transform) domain image of a spatial domain function.

SII.';



equation. The integral involved will be a convolution of a desired

unknown in the problem with an appropriate Green's function, which, for

two-dimensional problems, is of the form H(2)(k Ix-x01). When the inte-

gral equation is Fourier transformed with respect to x, according to the

convolution theorem, the integral is reduced to the product of the trans-

form of the unknown times the transform of the Green's function. For

the Green's function in free space, we have (Jones (1964)):

F{g (p)}iF{ 4H2(kP} 1 i~ ei (2.1.3)

where - k2 (the details of the definition of B are given

below) and P - (x)i + (y)^.

2.2 Specification of the Value of v/kz -k 2

x

The two dimensional Green's function is the solution to the inhomo-

geneous wave equation with a line source at P - 0 where we require waves

emanating from the line source to be outgoing and decaying. This means

that all the components in the spectral domain along the Fourier inver-

sion path must also have these characteristics. Observe that in the in-

version integral of (2.1.3) for g( P ), we must have Im(B) < 0 to give

rise to decay along the y axis.

Clearly all physical waves will have Re(B) > 0 to provide outgoing

wave behavior from y - 0 and will satisfy ImC8 ) < 0 so that the outgoing

waves decay (consistent with the passiveness of the medium). Hence any

I. ,
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physical wave will lie in the region characterized by Im(6)<:0, so the

boundary of the allowed region .is Im(B)-O, that is, B is purely real.

In the 8 plane this is the real axis and in the 82 plane this is the

positive real axis so

82 - f(k2 -k 2 ) - ( 2 -t 2 )] _ 2j k k + aT] (2.2.1.a)
r r ri

where
k -kr  jki and kx  CY+JT

So in the 82 plane, the boundary is given by

Im82 _ -2(kr k l+T) - 0 (2.2.1.b)

and

Re8 2 - (k2 -k2) - (a2-t 2) > 0 (2.2.1.c)
r i

Figure 2.1 which depicts the lines specified above in the

kx  a+jT plane. We observe that the condition Im(B) - 0 implies

IM(B2) - 0 and Re(a 2 ) > 0. The equality obviously gives a pair of hyper-

bolas in the second and fourth quadrants. The branch cuts for the allow-

able region of kx (top sheet of 6 ) will run from-± k to infinity along

these hyperbolas. To decide which part of the hyperbolas contain the

branch cuts of B, we observe that the cuts force Im(S) < 0 on the top sheet

which implies that they lie along Im(6) - 0 and therefore Re(S2)> 0. So

the branch cuts lie along the lines shown in Figure 2.1. These are the

conventional hyperbolic branch cuts and preserve decay at infinity. Since

our analysis will take us off the real axis in the spectral domain, it is
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important to understand where these cuts lie and to recognize that moving

them may cause problems in closing an integration contour at infinity.

We need a top sheet where the outgoing wave conditions stated above are

satisfied on the Fourier transform path (the real axis) and which allows

us to perform any semi-circular closures that we may need later. The kx

domain in Figure 2.2 shows the sign of Re(W) for points in the

k domain.x

One other related issue must be dealt with before we leave the sub-

ject of the definition of a. In some situations subsequently, we eval-

uate the factors of v =  2-k = iF+-k-"k--k- separately and must imposeX X X

the above conditions in so doing. The complex number (k-k x ) can be re-

presented by a vector pointing from +k to k. The modulus and argumentx

of the number are taken as the length of the vector and angle with res-

pect to a line running from +k parallel to the positive real axis to-K

ward infinity as shown in Figure 2.3. The complex vector representation

for (k+k) - k -(-k) points from -k to k and we utilize a similar defi-

x x x

nition for its argument as shown in Figure 2.3. As a result

(1 + 21
&_-_.= [(k+k ) (k-k )] -k-k2 I e J (2.2.2)

x X x Xk-~

is found to obey our branch definition of a and so we have a simple

rule for establishing the arguments of -- and v- which is consis-
x x

tent with the definition of 8.

Finally, a point of terminology needs to be established. It will

prove useful to consider branch definitions of B which have branch cuts
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Figure 2.3. Vector interpretation of (k+k ) and (k-k x).
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that are different than the hyperbolic branch cuts used in this section.

These alternative branches of B are arrived at by analytic continuation

of the function from the original branch definition. These new branch

definitions are described as analytic continuations of the function, 8,

arising from the movement of the hyperbolic branch cuts of B. This

language is used to preserve the intuitive sense of connection between

successive branch definitions and an apology is made here to the precise

mathematician for the use of this phraseology.

2.3 Edge Condition

In order to uniquely specify the field solution for diffraction

from a surface which contains a discontinuity of the surface normal

vector, it is necessary to specify field behavior in the vicinity of the

edge since unbounded fields arise. This problem was dealt with by J.

Meixner (1954). He required that a satisfactory representation for the

fields in a small volume including the edge must be limited to a finite

amount of energy. For a problem involving scattering from a wedge in

the presence of different media, Mittra and Lee (1971b) have given the

general solution for three media. The asymptotic behavior of the fields

as the edge of the half-plane is approached from large distances is given

below for the problems to be considered in this study:

E transverse H transverse Ez,Hz

0( p -;) o(p) o(p) (2.3.1)

J tl
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2.4 Wiener-Hopf Technique

The Wiener-Hopf technique applies to problems formulated on a semi-

infinite domain in a separable coordinate system and its use is ubiqui-

tous throughout mathematical physics (see Noble (1958)). For example,

in a two-dimensional boundary value problem where the boundary values

are specified along a line so that along one semi-infinite ray a Dirichlet

condition holds and along the remainder of the line a Neumann condition

holds, a simple solution involving the Fourier transform of the differ-

ential equation and the boundary conditions cannot be effected since the

boundary conditions do not hold along the entire domain of the trans-

form. We do not repeat the development leading to the Wiener-Hopf sol-

ution since that is available in numerous references (see Mittra and Lee

(1971a)). We simply state the results of the development. For the

convenience of the reader, we follow the notation of Mittra and Lee.

An integral equation amenable to the Wiener-Hopf procedure is of

the form

0

j1 f(x') g(x,x')dx' - h(x), xc (- ,0) * (2.4.1)

The semi-infinite domain involved in this integral equation precludes

Fourier transformation of the equation as it'stands. In order to trans-

form (2.4.1), it is necessary to extend the equation by introducing the

definitions

! .:
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0, x >0

_(x) - (2.4.2)
f(x), x<0

and

0, x>0

a_(x) # (2.4.3)
h(x), x < 0

With these definitions the integral equation may be rewritten as

1i f _(x) g(x-x')dx' - a(x) + b +(x), x (-co) , (2.4.4)

where b Cx) is an unknown function which has support for x in (0, )

and which must be introduced in order that the range of applicability of

the original equation (2.4.1) may be formally extended to a doubly-

infinite domain. Since b+Cx) is not a part of the original problem pre-

scription, it is a new unknown which should be recoverable in the solution

process.

The form (2.4.4) is amenable to Fourier transformation. With an ap-

peal to the convolution theorem of Fourier transforms, the equation be-

comes

0_(kx) " G(k) A.(k x) + B+(kx) . (2.4.5)

The constraints on the imaginary part of k are dictated by the exis-

tence of the Fourier transforms of the functions in a particular problem.

The Wiener-Hopf procedure leads to a solution for the unknown

o-__________
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functions + (k ) and B_(k ) which are constructed as follows:

S (k )
$(k ) - x (2.4.6)

-x

B +(k) _ S +(k) G +(k) (2.4.7)

The functions G+ (kx ) and G_(kx ) are defined through the factorization

of the transform of the kernel, G(k x), as follows:

G(k) G+(kx) .G_(kx) (2.4.8)

where
e G+(k is regular and non-zero for Im(k x) > T

and

G (kx ) is regular and non-zero for Im(k ) < T+

The pair of functions S (k ) and S (k ) are defined through the decom-
+ - X

position of a function into two functions which are each individually

regular over respective halves of the complex plane as given below:

A_ (k )

G (k) - S+(kx ) + S_(k x ) (2.4.9)

+1 x

where

S (k ) is regular for Im(k2 T
+ x

and

S (k ) is regular for Im(k < T+ .

* Thus, in summary, we can recover the original unknown function,

f(x), through its transform as computed in (2.4.6). The other unknown,

*]d~b~
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which is introduced in (2.4.4), is also recovered. To construct f(x), we

must find functions which are regular and non-zero over respective halves

of the complex k plane according to the factorization definition (2.4.8)
x

and the decomposition definition (2.4.9). It is on these two steps that

attention is focused in the Wiener-Hopf solution process.

2.5 Normalization

Throughout the body of this study, a normalization has been used

to bring the scale of the variables to a consistent and convenient level.

Unnormalized variables in the initial problem formulations are primed.

So j1 refers to the actual complex permeability of medium 1 (physical

property) and k' refers to the wave number of medium 2. Hence
2

k' - / . The normalization used is reflected in the following

equations where the unprimed variable is the normalized variable and

(A0,E0) are the constitutive parameters for free space:

k' - kl(w ) ' "i =Ei*E

. The effect of this normalization is to reference values of any variable

to the value which holds for free space at the frequency of interest.

Because the transform variable, kx, is normalized to the free space

wavenumber, k0 - W / 0.P0, it is necessary to normalize distance to the

free space wavelength:

x a k0 ox'- (27a (distance in wavelengths))

where x' is the unnormalized distance. This ensures that k'x - k'-x'

where the unprimed quantities are normalized and the primed ones are not.

______________________________



CHAPTER III

WIENER-HOPF ANALYSIS OF THE INTERFACE PROBLEM

3.1 Statement of the Problem

The diffracting geometry to be considered is shown in Figure 3.1.

The half spaces for y' > 0 and y' < 0 contain media characterized by

(pli) and (p2,gP respectively and their interface coincides with the

x '-z' plane. The media are general and characterized by constitutive

parameters which are complex numbers having real part greater than zero

and imaginary part less than or equal to zero. An infinitely thin, per-

fectly electrically conducting (PEC) screen lies on the interface for

x' > 0. A plane wave is incident from medium 1 at an angle e to the PEC

screen (0 < e < 70. The incident wave may be polarized either transverse

magnetic (TM) or transverse electric (TE) relative to the z' axis and is

j invariant with respect to z'.

We seek to determine the total fields everywhere in space in the

presence of the medium discontinuity and the diffracting PEC half-plane.

The more practical result developed, however, is the field at great

distances from the edge of the half-plane, that is, that which results

from applying asymptotic evaluation techniques to the inverse Fourier

transform integrals of the Wiener-Hopf solutions obtained.

This problem may be formulated in terms of an unknown quantity which

23
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resides on the interface and which is non-zero only over half of the do-

main, that is, for x' in (- ) Either the component of the total

electric field tangential to the interface plane is considered unknown

for x' in (- 0) or the surface current density on the PEC half-plane

for x' in (0,-) is considered as unknown. In either case the quantity

in question vanishes on the complementary semi-infinite domain by the

physics of the problem.

We proceed in this chapter to state four integral equations result-

ing from the two incident field polarizations viewed both from the aper-

ture and the PEC half-plane formulations. The particular case of TM in-

cidence formulated over the aperture is treated in detail. The other

three integral equations admit to similar treatment. We conclude the

chapter by relating them to the TM aperture formulation.

3.2 Integral Equation Formulations

We begin by considering the formulation of the TM scattering problem

j as an integral equation with the tangential electric field over the aper-

ture plane (x' <0) as the unknown. The problem configuration is shown

in Figure 3.1. The analysis follows the procedure described by Butler

and Umashankar (1976). The problem is viewed as the composition of two

subsidiary problems, one equivalent problem for the half space above the

interface plane (y' >0) and another below the interface (y' < 0). In

each equivalent problem the PEC half-plane is extended to cover the en-

tire interface plane and an unknown surface magnetic current is intro-

t •~
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duced to provide the correct continuity across the shorted aperture of

the tangential components of the fields. The resulting integro-differ-

ential equation is given below:

0

h W(x') -J W![ + (k X 2  e(x 0) g(x',x 0)dx0

0

+_TE +_(k_I ez(X 0 ) • g2 (x',x0 )dx 0 (3.2.1)

for x' (- -,0),
t jk'x'cose

1 h r 
in c  = - E 0e

where sine is the component of the incidentx ri

magnetic field which is tangential to the interface
plane (E0 is the magnitude of the electric field of
the incident lane wave at the edge of the PEC screen

and r C -)

ez is the total electric field over the aperture,

( )'(E ,) are the permittivity and wavenumber for the
medium in the upper/lower half-spaces respectively,

and g1 ,g 2 are the Green's functions appropriate to the respective
problems:

g(l) (x' 0 -4 0 (k(J)IX' - ol)

The TM problem can also be formulated in terms of the z'-directed

current induced on the PEC half-plane as an electric field integral

equation. The resulting integral equation is

e ez  - a(x',x0 )dx0  (3.2.2)

for x' E (00-),

f

I___
LI
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where e N s the total electric field present with the PEC half-plane
Z removed, that is, the total scattered field in the presence

of only the discontinuity of the media,

Jz is the unknown induced electric current on the PEC half-plane,

a is the Green's function which serves as the kernel.

The kernel is usually expressed in the spectral domain as it involves a

Sommerfeld integral. For this problem the Fourier transform of the

kernel a(x') is

A(k) W (3.2.3)
x

Similar procedures can be formulated for the TE case. The problem

can be formulated as an integro-differential equation either over the

aperture or over the PEC half-plane. The resulting equations are shown

below:

Aperture Formulation

inc -W re~0  Xh n W) f ex(x (3.2.4)

0

[E'-H(2) (kIx' ol) 0 2( (k ixl-xol)1 odx

for x' (- , 0)

ill ' F I" . .. .. " '- -. ... ....
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PEC Formulation

e (x) L') (kM2 JwJ + j(xO) *a(x',xo)dxo (3.2.5)

e=0
x00

for x' e (O,c), where a(x',x ) is the kernel of the integral equation in

the TM case. The Fourier transform of this kernel is
-J

A(k') - (3.2.6)

It is noted that equations (3.2.1) and (3.2.5) are integro-differ-

them requires integration by parts which results in the formation of a

term comonly referred to as the bilinear concomitant. A detailed exam-

ination of the conditions for the vanishing of this term results in a

boundary condition on the applicability of the Wiener-Hopf equation in

the transform domain. The remaining two integral equations are seen to

involve Sommerfeld integrals as part of the Green's function in the ker-

nel. On examining the regions of validity for the Fourier transform of

the integral equations resulting from the two formulations in a parti-

cular polarization, it is found that the regions are complementary in

the spectral domain; that is, the union of the domains for the two formu-

lations is always a strip in the transform domain which is bounded by

the branch points for that wavenumber in the problem which is closest to

the real axis. As a result if the strip of analyticity vanishes in one

formulation due to the angle of the incident plane wave, it is found that

It
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the other formulation will have a non-vanishing Wiener-Hopf strip.

3.3 Wiener-Ropf Formulation for TM Incidence: Aperture Formulation

The integral equation (3.2.1) may be formally extended to apply on an

infinite domain as in (2.4.4) in order to allow it to be Fourier trans-

formed into the form of (2.4.5) with the result

a(x) + b(x') +()g(x'% ,)dx

1 x21~x)(3.3.1)

-iw k + i132  92-- I (O).g 2 (x',x0 )dx 0

where

a(x') (3.3.2)

h inc(x ' )  -<x' <0

runknown function , Q<xl <00

b(x') =  (3.3.3)

,0 -<X1 <0

0 des e, O < OX'

¢t(x') - (3.3.4)

ez u) o the desired, -n<x< 0
unknown funct ion
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The unknown function b(x') is, o-f course, not required by the original

integral equation. It is an artifice in the Wiener-Hopf procedure and

is ultimately eliminated.

The extended domain integral equation (3.3.1) can be Fourier trans-

formed according to (2.1.2) to obtain

A(k) + B' (k') -jE v 2 LT- Fi 1 '(k G G(k'l
x x1 L klLx i j

(3.3.5)

where we have used the convolution theorem of Fourier transforms. The

transformed kernels G1, 2 contain the Fourier transforms of Hankel func-

tions and are given in (2.1.3) with y - 0.

At this point we introduce the following substitutions and normaliza-

tions:

A_(k) k j E0 sin (3.3.6)
o k A (k0k) 7k v-0 Tl 1 (k1 cos a+ k x)

+ () B'(kk) unknown function , (3.3.7)

Sx -kE' (kok)

D -k (k) k k ) 2 '___ _0_k (3.3.8)
-x 2 2

1 W (3.3.9)

0 W

I _ _ _ _ _ _ _ _ _ _ _ __ _ _
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With these normalizations, the result is that for

(-min(ki 2i) k 2 < T < (T+ = min(k 2 i, kli cose)) (3.3.10)

where k - a+jT and k k r- ix

the following equation holds in the Fourier transform domain:

A_(k ) + B+(kx) [ + L (k) (3.3.11)

This is the Wiener-Hopf equation which we must solve for D_, the Fourier

transform of the electric field in the aperture on the interface between

the two media.

Requisite to the Wiener-Hopf procedure is the determination of the

common strip of analyticity in the k plane for the quantities appearingx

in (3.3.11). One must consider the region of existence of the transform

domain functions appearing in this equation in the light of the Wiener-

Hopf factorization defined in (2.4.8). 2

Figure 3.2 depicts the complex k plane and the boundaries delimit-
x

ing the half planes of analyticity for the functions involved and the

directions from each boundary in which the regular regions extend. (The

IThis restriction on the region of validity of the Wiener-Hopf

equation arises from the analyticity and existence of the various cons-
tituent transforms and is discussed subsequently.

2We consistently use the (+) subscript to denote a function which
is regular and non-zero in the upper half plane and (-) to denote similar
behavior in the lower half plane.

_ _ _ _ _ _ _ _ _ _ _ _
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subscript notation introduced in equations (3.3.6) through (3.3.9) refers

to the regions of regularity for the functions defined there in antici-

pation of the Wiener-Hopf analysis which follows.) The common region of

analyticity for all the components is observed to be bounded by (3.3.10).

We also note that the Wiener-Hopf equation, when formulated over the

aperture, does not apply when T+ < T_ which occurs if k licos < -k21.

Observe that this can only occur for e > Tr/2 when kli > k21.

Our Wiener-Hopf system is (3.3.11) and applies in the domain defined

by (3.3.10). To use the Wiener-Hopf procedure, it is necessary to form

the factors G+ and G_ defined in (2.4.8).

3.4 Factorization of G(k )
x

We consider in this section the factorization of the kernel in the

Wiener-Hopf equation (3.3.11)

x 8i 82

Before proceeding to formulate a formal factorization integral for G(kx )

some observations about the function are in order. G(k x ) is analytic

except on the branch cuts of 81 ? -k2 and 82 v kri, and is

bounded in any finite region of the complex k plane. It is a multiple-x

sheeted function with four Riemann sheets. It is also an even function.

There is a total of four zeros on all sheets and they occur ir pairs on

a sheet. Hence two sheets will have no zeros and two will have two zeros

each.
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It is useful to partially factorize G(k ) by identifying explicit

factors which are regular over the requisite half planes

G~~~kQ-1 -lk ) "2k )  l 2  "l L"u+ u+ 2 ] (3.4.2)
1 1.2(~ 1 2 L +- 2 2( 2

The first factor C (k ) is factorized by inspection:

G1(k1) . k (3.4.3)
1L w 2  1 ,

The G2 factor is now the function which remains to be factorized. We

note that it is bounded except at kx a kI . In particular G2 (k) - I as

Ik i ". It is a two sheeted function since the branch points are intro-x

duced only in the ratio of (82/81). This is apparent if one considers

the value of the function on a closed path which encircles two of the four

branch points. It is an even function (as is G(k x)) and is bounded every-

where except at k M ±kx . Since there are two branches of G2(kX), there

will only be two roots which will occur and they will be located at the

following positions:

2 2 2 2
k~ P±k 2 - 1 2 U 0 2 (3.4.4)

If 4l "2' there are no roots of G2 (kx ) unless ei e 2 Pi.e. unless the

media are identical signifying the degeneration of the two media problem

to the classical half-plane problem. It is readily determined on which

sheet of G2(kx) the roots occur by substituting the roots of (3.4.4) into
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equation (3.4.2) for G2(kx). They can only occur on one sheet.

The two different choices of branch cuts shown in Figure 3.3 prove

useful in defining G2 in subsequent developments. The cuts shown in

Figure 3.3a are sectors of hyperbolas which are asymptotic to the coor-

dinate axes and pass through the branch points. A pair of these cuts is

associated with the respective branch points at + kand + and their

choice ensures that

< 0 , Im 82 < 0 (3.45)

for all points in the kx plane as discussed in section 2.2. With B1 and

82 defined by the hyperbolic branch cuts, it is difficult to discuss the

occurrence of the roots on the top sheet of G2 (k). It is desirable to

consider an analytic continuation of the definition of the top sheet of

G 2(k x ) which manifests the fourth quadrant branch cut as a curved line

connecting the branch points k1 with k2 (and, similarly, another line

connecting -k1 with -k2 ). The branch cuts for this analytic continua-

tion of G2 (kx ) are shown in Figure 3.3b and account for the two-sheeted

nature of G2. That this branch cut deformation is permissible is a

result of the radicals in G2 appearing as a quotient only. The precise

definition of this branch cut and the properties of the new top sheet of

G2 (kx ) are discussed below.

In order to examine the functional behavior of G2 (kx ) with the new

branch cut configuration, the functional mappings implied by G2 (k ) can

be viewed as a series of conformal mappings. For simplicity, only values

MIT.. . ..
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-1(2
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K2

Figure 3.3a. Definiton of G 2(k xwith hyperbolic

ba c uts.



37

Kx=o+jT

-K 2

7KI

Figure 3.3.b. Definition of G2 (k x) with finite-length

hyperbolic branch cuts.

I- __________II ________"_-___"____....
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of kx with tm(k ) < 0 will be considered. (Similar arguments apply for

Im(k ) > 0 also.) The mappings are depicted in Figure 3.4 along with the

critical points kx - ki, k2, cc.

The definition of the new branch cut of G 2(k ) is shown in the y

plane of Figure 3.4. The branch cut connecting k2 and k2 is a straight
1 2

line which, of course, goes through k cc* The transform shown as B(k )x x

is a Mobius mapping and hence circle-preserving. However B(Co) = 1 and

B(k 2 ) - 0 which causes the branch cut to map into the negative real axis

in the B plane. In order to define D = /, it is necessary to specify

both the branch cut and a point on the top sheet of D. For this reason

the point D(c-) - I is used. This causes G ) - I as Ik 1-*o and pre-

serves the asymptotic behavior of G2 (kx ) required by the integral factor-

ization theorem which we apply later. Since B(-) - D(-c) - 1 and D - /B

it is clear that the specified branch cut maps into the imaginary axis in

the D plane. Observe that the root of G2 (kx) occurs at D -

Since both U and p are, in general, complex numbers in the fourth

quadrant, their ratio is a complex number restricted to the first or

fourth quadrants. Therefore, (-'2/Pl) must lie in the left half of com-

plex D plane; that is, the root of D must lie on the lower sheet of D.

This proves that the branch definition of G2 which is specified by the

2
straight cut between k, and k2 (and hence -kI and -k2 ) in the y a k2 2x

plane and the asymptotic value of lim G2 (kx) - 1 as JkxI -  has no roots

on the top sheet. This cut in the Y plane may be mapped back into the

k plane, of course. However it proves less complicated and no more

ix
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Mapping Critical
Function Points Mapping

1. Y a2 y(K) K K2

y(K) K 2

K 2- B(2 (I)
-Y~~, B(K1  I ( 1

K1 YB(K 2 )wOK

B(-o) -1

D(K1)

.13. D - rB-D(K) LOWER(CO Dr

(2  SHEET1
D(-) I OF D/

D(KI)

Figure 3.4. Conformal mappings implied by G2(kx)
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costly to transform the integral in k to an integral in Y and thereby

obviate the need to explicitly define the cut in the k plane.

We proceed to perform a formal integral factorization of G2 (k)

defined in (3.4.2). The following factorization theorem (Mittra and Lee

(1971a), Noble (1958)) is applicable to G2 as we have constructed it:

Let G2(kx ) be regular and nonzero in the

strip T_ < T<T+. Within this strip, G2 (k x ) - 1

uniformly as 10I . Then G2 (k ) can be fac-

torized such that

G2 (kx)" G2 (kx)"G(x

where

+ 00+j 4 C ZnG 2(6)](346
G](kx) -k-k d6} <C<T<T+ (3.4.6)

is regular and nonzero in the upper half

kx-plane defined by T > T_ ; and

-1 -+J Zn02 (6)]

G2(k) " exp I -k d6 , T_<T<d< T (3.4.7)
2 rul ade X f ka

is regular and nonzero in the lower half

kx-plane defined by T < T+.

Let us consider the integral in (3.4.6). Figure 3.5 shows the inte-
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Kx

C /KI

INTEGRATION+
PATH FOR G2(Kx) K

Figure 3.5. Integration path for the integral

factorization G +(k)
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&ration path in the plane. Since we are considering a case which has

no roots of G2 on the top sheet, no additional cuts are required for the

logarithm. This analytic continuation of G2 has precisely the same val-

ues in the complex 6 plane as the original definition of the top sheet

of G2 at all points except those in the region bounded by the hyperbolic

cuts and the new branch cut connecting kI and k2 (and the symmetric image

of this region in the second quadrant). Since no roots occur in this de-

finition of the top sheet of G2 and the function is bounded at all points

in the 6 plane except 5 ± kI , it is clear that no branch cut of the lo-

garithm specified in equation (3.4.6) need appear on the top sheet of the

integrand shown in Figure 3.5.

We observe that the principal value of the logarithm is an acceptable

definition for the integrand in (3.4.6). Such a definition can be seen

to have the logarithmic branch cut on the lower sheet of the integrand.

Considering the plot of the D plane in Figure 3.4, the logarithmic cut

will run from the root of G2 along a line connecting D(-) - 1 and the

root. It will run to D(k1 ) = - in the direction opposite to D(1) = 1.

We may close the integration contour at infinity either up or down

with no change in the value of the integral since the integrand is

uniformly asymptotic to zero along any arc at infinity. Closure down is

shown in Figure 3.6 where we show the integration path taken in the

negative direction (for convenience later). The region enclosed by the

contour is analytic and therefore the contour integral equals zero.

Also the contributions from C and C cancel while all contributions
1 2

t|

& ___ ____ _____ __"_
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Figure 3.6. Closure of the integration contour.
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from C. are zero. Therefore we have

I - f (3.4.8)

(C) (-C Cb

We have converted the original infinite line integral into a finite loop

integral encircling the branch cut from 6 - k to 6 - k2.

We now consider the loop integral around the branch cut. The loop

integral may be considered as four separate integrals as shown in Figure

3.7. We have taken the branch cut as the line connecting k1 and k2
22

specified implicitly by the straight cut in the Y = k plane. Therefore
x

we have the following:

I dc unfG 20) d + f f . (3.4.9)
6-kx f - C C C

-4Jc b C1 C2 C3 C4

Using standard analysis one can show that the contour contributions

vanish on the two semi-circular arcs C2 and C4  Thus the original inte-

gral reduces to

+Jc Zn G (6) d6 Zn G 2 0)(6)( . . 02 d6 -- k d6 (3.4.10)

jC C1 + C x

For purpose of computation it is necessary to establish the value of

G2 for points on the integration path C1. This is straightforward since

the path specified by C 1 does not cross the original hyperbolic cuts in

Figure 3.7 and the original hyperbolic branch values of the square roots

may be used along C. This can be shown by observing that the hyperbolas
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Figure 3.7. Detail of the integration contour in
the vicinity of the branch cut.
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correspond to straight lines in the ( k 2 plane which are parallel to the
x

real axis and pass through the branch points. Hence the hyperbolic lines

through k I and k2 in the kx plane of a problem will map into straight

parallel lines in the y plane while path C 1 maps into a straight line

which connects the branch points. So the value of G2 on a path C1 will

always be that associated with the hyperbolic branch cut definition.

As depicted in Figure 3.7, the integral along C 1 (path from k to k2)

is on the original top sheet of the hyperbolic definition of G2 and the

integral along C 3 is on the original lower sheet of G 2 (in the limit as

C3 approaches the branch cut). This is due to the fact that in the prob-

lem shown in Figure 3.7, the point 6 - k lies on the original hyperbolic

branch cut which was nearer the coordinate axes in the 6 plane. Had k

lain on the inside hyperbola, we would have found that the path from k

to k2 would have been C3 rather than C This suggests an algorithm for

establishing values of ln(G 2) on the line integral.

The path C1 , as defined, is always on the original top sheet of G2

so that a1 and B2 are clearly and simply defined on C1 (with the hyperbolic

branch cuts). Also we observed that C lies just across the square root

branch cut from C1 which simply means a change of sign for ( ).

Therefore we have

njc n G2(2) Z £n[a + b B2 /B 1 Zn[a - b 2/BI1

6 - d6- j - k d6- f a k d6
x x x-BJ c C C 2

(3.4.11)

- -- [Zn(a+b B2I61) / Zn(a-b 1B )Jd6

C1
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where a = 2 /(PI +'2) and b -L/( I+12 ) .

We have reduced the original infinite line integral to a finite line

integral. Since the ratio of the logarithm arguments in (3.4.11) is

less than T , it is permissible to express the integral as

-+ CZn21 Fn 1 2
ZG(6 ) d6 a-b2J l d6 af 6-b6 d6,

Sd6 x - kx  6 - k x
jc 1 C (3.4.12)

For k on the inner hyperbola ( branch cut nearest the real and imagi-

nary 5 axes):

-1-j C n 2y i,  + P 12

f 2I k d6 (3.4.13)

-+c CI

B and $2 maintain the hyperbolic definition and In is the principal

value. For k2 on the inner hyperbola:

jc Zn I p2a8+ I'1 2]

- Y 1 16-k d6 .(3.4.14)

-'-jc C1

To consolidate these expressions we define a function DIR(k.:

+1, when k is on the inner hyperbola

DIR(kl) (3.4.15)

-1, when kI is on the outer hyperbola

II L I
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This leaves us with the final result

~+ I'g 2fll + 12
00+Jc ZnG 2 (6) j• L 21n -1 2

- [DIR] *-k " 2 (3.4.16)
fk x 

d6
•-*+Je C1

Note that ln((2al +111 2)/(P2a1 -IJ1i 2)) is a well-behaved function for 6

on a line between k and k2. As 6 kI , ln - ±Jt and as 6 - k2, ln - 0.

The function (3.4.16) is analytic in the region around the inte-

gration path except at k and k2. In fact, the integral is a Cauchy

type integral since the logarithm is analytic along the integration path

except at kI and k2(see Markushevich (1977), Gakhov (1966)). That is,

the logarithm function is continuous on the integration path. The value

of the integral is an analytic function of k for all points off of thex

integration path and tends uniformly to zero for Ikx -..C. We can charac-

terize the jump in the value of the integral as kx traverses the path of

integration using the Plemelj formulas. The important point is that the

integral constructed has well-behaved properties in the variable k . Atxq +
this point we observe that the expression for G2 , given by the formal

factorization formula, was asserted to hold just for kx such that

T_ < T < T+. We now have a well-behaved form which is the analytic con-
+

tinuation of G onto the entire k plane. Therefore we have the factori-

zation of the original function G(k x), (3.4.1), given as follows:

Jx
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112 11 DI + ( U) BI (

G+(k + -k exp I2 " - 2 ( 6.
+ ~ 1~1~ 1x 2Trj j -k" C1  x (3.4.17)

where 81, 82 and vi-kx are the original values defined in Chapter 2,

in is the principal value of the logarithm and C1 is the path from k

to k specified by 62 (k2-k2)t+k2 where t is a real parameter and t is
2 2 1 1

contained in [0,1].

It is a straightforward exercise to formulate the integral in terms

of the real parameter t, which is used to characterize 6 on C Direct

substitution results in the following:

1~12(k 2 -_k1 2 DIR

S2 x 4(3.4.18)

f1 1281(6) + 11182(6) -1 n118() - 12(] 1
t-O0 ( - k x)6 dt

((t)

where 6(t) =(ki-ki)t+ki ,using the principal value of the square root.

We now establish a useful relation between G+(kx) and G_(kx). It is

clear that G(kx )G +(kx )G (k x ) is an even function of kx . Therefore,

G+(k) G(-kx)
G(k) for G_(-k ), G_(k ) € 0 • (3.4.19)

-_kX ( x - x

Each side of the above equation is an entire function since G+(kx)/G_(-kx)

I . ,"I I I I II ,._d. .. .
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is analytic for T > T_ and G+(-kx)/G_(kx ) is analytic for T < T+. By the

concept of analytic continuation we assert that the two sides are equal

for all kx on the top sheet and are entire functions. As lk x-1 c0, we have

by construction that G+(-k x) since the exponential goes to I and,

similarly, G_(k x ) + vix. Therefore, G+(-k x)/C(k ) - 1 as IkxI W . Hence

G+(-kx)/G_(k x) is an entire function, bounded at infinity. By Liou-

ville's theorem from complex analysis, we have that G+(-kx)/G_(kx) is a

constant for all k X and hence is equal to unity. So we have that

G+(-k)- G_(kx) and we see that this symmetry will be true of the factor-

ization of any even function G(kx ) which can be used in a Wiener-Hopf

analysis.

We note that G_(k x) is analytic in the lower half of the kx plane.

Since G+(kx , G(kx/G_(k X)- G(kx)/G+(-kx), the integral for G+(-k ) in

this expression will converge more quickly for k near the integration

path from k to k 2 than will the original expression for G+ (k x). The

judicious use of these two representations for G+ (k x ) ensures conver-

gence of the integral which is to be evaluated numerically.

In a similar manner to the analysis leading to (3.4.18), we can

derive the integral representation for G_(kx) from (3.4.7). It can also

be shown using these two expressions for G+(k.) and G_(k x ) that, in fact,

G+(k G_(k 2 " G(k2. It is also clear from their form that the func-

tions are analytic in the upper and lower portions of the complex kx

plane as required. The symmetry of the two functions (G+(kx)- G(-kx))

is also apparent from the factorization integrals.

Before leaving the subject of the factorization-of G, it is
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appropriate to examine the location of the roots of G+(ks) and G_(kx).

We observed that the integrals in the exponentials are analytic functions

except on the integration paths (kl, k2 ) and (-kl, -k2 ). They are bounded

except possibly in the vicinity of those lines. Therefore G+ and G

must be bounded except possibly in the immediate vicinity of those lines

(which are actually branch cuts of G+ and G). Now we know that G(k )- x

has four roots which occur in symmetric pairs on two of its four sheets.

If two of these roots occur on the top sheet of G then they also exist

for (G+.G_). However the arguments of the exponential factors

which appear in the expressions for the functions G and G_(using the al-

tered branch cut definitions) must be bounded and hence G+ and G_ cannot

be zero (except possibly at the branch points kx 
= ±k1 ). This is a de-

monstration that G+ and G_ have no roots on the top sheet except possibly

at the branch points themselves if G has no roots on the top sheet with

the deformed branch cuts. Therefore the roots of G, G+ and G_ lie on

the sheets adjacent to the top sheet. As noted above G+ and G are

related functions and therefore will each contain one root on the

improper sheet.

In closing this section on the factorization of G, we reiterate that

a knowledge of the position of the roots of G and construction of a cut

which placed them off of the top sheet is crucial to the formation of

the simplified integral expression (3.4.17) and is subsequently seen to

be important in forming an efficiently computable solution to a Wiener-

Hopf problem.

_______________________
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3.5 Decomposition

In the analysis below we carry only the formal functional expressions

G (k ) and G (k ) to represent the functions derived in the preceeding+ x - x

section. As pointed out there, the analytical behavior of the factorized

functions is simply inferred from their form, and they are straightfor-

ward to evaluate numerically. Therefore, having performed the factor-

ization, we may now proceed with the decomposition operation specified

in Section 2.4 (equation (2.4.9)). The function to be decomposed is

S(k ) - A /G+ S (k ) + S(k ) (3.5.1)
x - + (k cos + k ).G (k) + x

where

JE0 sin&6

The decomposition is seen directly. G +(k ) with its branch cuts must be+x

part of S (k ) while the other singularity due to the root of (k +k1cose)+ x X

will clearly lie in S , so that

S+(k(k 1 tose) (3.5.2)

and

Sk (k S1c, (3.5.3)
+ x X~() G +(-k 1cose)] (k x+ k 1cose) (35)

Note that the pole of S+ due to the zero of the denominator of the

second factor is cancelled by a zero in the first factor. An application

* '*.,-- 44'



53

tion of L'Hospital's rule shows that the function S+ is bounded at this

point. Having performed the decomposition, we proceed with the Wiener-

Hopf analysis as follows:

B+ -G (3.5.4)

+

We observe that the left side of the equation is an analytic function in

the upper k half plane (T > T ) and that the right side is an analyticx

function in the lower k half plane. The equality stated in (3.5.4)x

holds in the domain (T_ < T < T+). Therefore by analytic continuation

we can assert that the two functions are analytic continuations for the

upper and lower half plane of an entire function P(k ).
x

Consider the asymptotic behavior of G +(k ) and G (k ) as Ikx1

Clearly the integrals in the exponents vanish since k appears only

in the denominator of the finite integral. Hence G+ I G_ - Ikx1 ,

and from the expressions for the decomposition functions, we see that

the asymptotic behavior is as follows:

S+(k ) and S (k) I k I- as Ik x . (3.5.5)

If we examine q(x) - ez (x), we have from the edge condition that
z

4(x) ^- x • It can be shown (Mittra and Lee(1971a)) that this implies

N(k ) -u k - 3 . Therefore we have
X X

P - G - S ~ [(k - 3 / 2 )(k - I/ 2) - k1] 0 (3.5.6)
- - xX x

We now have need of the asymptotic behavior of B (k ) which is essen-
+ x

tially the Fourier transform of the difference current on the conducting
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half-plane due to the edge. It can be shown that B (kx ) 
% k ' There-

+ x x

fore we see that P(k) 1, k -1 for lkx 4 and hence P(k) - 0 for Ik I o

We have shown that upon completion of the decomposition step we can

create a bounded entire function P(kx). By Liouville's theorem we know

that P(k x) is equal to a constant. However we know that P(k ) , 0, hence

within the strip of analyticity of the Wiener-Hopf problem we arrive at

(2.4.6).

Therefore we obtain the following result for the transform of the

total electric field over the aperture of the interface problem:

E(k) 2 k f ]sk2 ) G (kx+~oe
0 L'x ~ k 0  k GkCos

where L G n +(-kcose)]

i+

"T 1

If-

' I1 I N..... .



CHAPTER IV

ASYMPTOTIC ANALYSIS OF THE INTERFACE PROBLEM

4.1 Fields in the Transmission Region (y < 0)

4.1.1 General Formulation

As a result of solving the Wiener-Hopf problem for the interface

geometry in Chapter III, we have determined the Fourier transform of the

total tangential electric field over the plane y = 0. From aperture the-

ory we know that this can be directly related to ez anywhere in the tran-

smitted region (see Collin and Zucker (1969)). The electric field has

only the z component since the excitation is transverse magnetic to the

z direction.

Because the transform variable, kx, is normalized to the free space

wavenumber k 0 - 0C , it is necessary to normalize distance to free

space: x = k0.x' - (21T'(distance in wavelengths)) where x' is the unnor-

malized distance. This ensures that k-x - k''x' , where the unprimed

quantities are normalized and the primed ones are not.

The total electric field e zin the transmitted region may be con-

structed to be

00+j C'

e Wx, y) . J Ez(k) e-j'-P') dk' for y'<O. (4.1.1)
Svk c'

55
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where k' =(k')X-(ky)y, k' ' , '-kx, D"'

Reverting to normalized parameters and substituting in Ez(k ) from

(3.5.7), we have

-jc 2-j ( 2 y+kxx)r e
ez(X,y) - & (k +k cose)G (kx) dkx for y<0, (4.1.2)

k X-.+j x
x

where c places the inversion path in the strip of analyricity fixed in

the Wiener-Hopf procedure, i.e. that of (3.3.10) with & given in (3.5.7).

Equation (4.1.2) is an exact field representation of the solution to

the interface problem in the transmitted region. It is largely a formal

result, however, since it manifests the computational formidability

typical of inversions of continuous spectra. For diffraction computa-

tion, the asymptotic evaluation of (4.1.2) for large 0 is quite useful,

however, and we turn our attention to this task.

The choice of the branch cut due to I in Ez (k) will not affect the

convergence of the inversion integral (since S, does not occur in the

exponential). The factor G_ contains cuts due to ai and $2 . Moving the

semi-infinite cut for i does not affect the convergence of the Fourier

inversion integral since G_ does not have an exponential behavior. It

is useful later to exercise this freedom in the asymptotic evaluation of

(4.1.2). We can analytically continue G (k) into the extended form

with the semi-infinite hyperbolic branch cuts from -k and -k2 without

affecting the integral or the convergence behavior at IkxI - -. In so

doing we may expose a root of G which resides on the exposed portion of

the lower sheet. Also the method for evaluating G_(k x ) in this region of

Lx
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the kx plane is to use G_= G/G+ where we use the original definition of

G(k ). This continuation of G causes the integrand to have the hyper-x

bolic branch cuts extending from -k1 and -k2 to in the second quadrant.

4.1.2 Angular Spectral Mapping

We now make use of the trigonometric substitution kx = k2 sinct, where

a is a complex variable, to map the integral onto the a domain. Such a

mapping is conventionally referred to as determining the angular spec-

tral domain, a. The cuts become the lines in Figure 4.1 which are asymp-

totically vertical and pass through a = + 7T/2 and - 7r/2. The lower

sheet of the original plane is mapped into the regions indicated with

crosshatching in Figure 4.1. The former two-sheeted plane of 3 2(kX)

thus becomes the periodic plane shown in Figure 4.1 with the role of

the branch cuts replaced by lines which are their images . The effect

of this mapping is to open up the function 2 Vk- k 2 , and fix a

saddle point in the integral which may be used in a steepest descent

analysis. Substituting kx  k 2 sin a, x - p cos c, y p sin p for

-iT < < 0 into (4.1.2), we obtain

k cosa -j(k2P) • sin(a-4)
e e 2 da,z G_(k 2sina) .(k 2 sina + k1  @ (4d .3

(4.1.3)

where r is the mapping of the integration path with k x on (--+jc,+-+jc).

In Figure 4.1 is shown the portion of the complex a plane which is

-- --.,- -
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of interest and the position of several key features of the kx plane.

For simplicity and definiteness we take the inversion path to be the real

k axis (this is correct for 0 < 6 < Tr/2). A discussion of the equationsx

for various a plane contours of interest is given in Appendix A. As not-

ed above, the boundary of the top sheet in the k plane, which is definedx

by the branch cuts of 2' corresponds in the a plane to the curve repre-

senting the image of the real k axis moved to intersect the real a axis
X

at a ± 7/2 (see Figure 4.1).

The next stage in the asymptotic analysis of e is to deform the
z

integration path to the steepest descent path (SDP) through the saddle

point. In the process of deforming to the SDP, singularities of the

integrand may be crossed and must be considered separately. The saddle

point is characterized as a point in the a plane at which the derivative

ot the exponent vanishes.

d [-j k 2 0 sin( s-x)] -j k 2 P cos(a- ) = 0 (4.1.4)

s

ats -n is an integer (only n = I is of interest).

Note that as the angle of observation moves from P - 0 (on the lower edge

of the PEC half-plane) to -Tr (on the lower edge of the interface aper-

ture), the saddle point moves from a - 7/2 to a -7/2. The shape of SDP

is a function of (a-) and hence of (a-a ), therefore it is unaffected
s

as the observation angle changes. That is, the SDP's shape is fixed for

a specific problem but its position moves so that it crosses the real a

mmmi7T
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axis at os . Therefore,once the curve of the SDP is found, only the re-

gion of the o. plane between the integration path and the SDP need be

examined for singularities of the integrand. Hence a graphical proce-

dure can be used to locate the dominant contributors to the far field.

The total field is represented, after deformation of r to the SDP,

as the sum of an integral along the SDP and the singularity contrib-

utions swept during the deformation. For 1k2P1 0, the SDP contribution

is asymptotic to a term containing the value of the integrand of (4.1.3)

at the saddle point. The contributors to the far field are the follow-

ing:

1. SDP integral contribution - Present in all

cases and is equivalent to the diffracted ray

for the half-plane in a homogeneous region,

2. Pole due to the root of (k2sinc&+klcos8) -

Contributes when swept and is the counterpart

to the geometrical optics field in the homoge-

neous half-plane problem,

3. Pole due to the root of G - Contributes if

crossed in the deformation to the SDP,

4. Branch point of G_ at kxw-k - Contributes when

swept and denotes a term arising from the pres-

ence of the semi-infinite opposing half space

which is filled with a contrasting medium.

.....
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All the singularity contributions are functionally characterized by the

integrand evaluated at the singularity position in the L plane

e = (ezsdl + (e+ (e )  + (e )zsaddl (ez)g.o. z z root

point pole branch of G
brat ch (4.1.5)cut

When the terms of (4.1.5) are evaluated asymptotically, they exhib-

it an exponential behavior which is determined by the position of each

contributor in the a plane. It is useful to determine what region of

the a plane will correspond to outwardly decaying waves (and therefore,

physical ones). Clearly these waves have the real part of the exponent

less than zero,

Re[-j k 2 sin(a- )] - -k21sin(u- )cosh v + k2r Cos(u-)sinhv (4.1.6)

where a u+jv and k2= k2 rJk 2i, Therefore the boundary of the a plane

corresponding to physical waves has

k tan(u - ) tanh(v). (4.1.7)

We observe that the mapping of the real kx axis into the a plane is

given by: k21 tan(u) - k2r tanh(v). Hence the boundaries of physical

waves are given by the real kx axis mapping shifted to the position u

and u = + 7r (the region from ir/2 to the left of the saddle point over

to Tr/2 to the right of the saddle point).

If the inversion path r is the mapping of the real k axis (whichx

is permissible if 0 < 6 < Tr/2), then we are guaranteed that only
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singularities for decaying waves can be crossed for all observation angles

-r < 0< 0. See Figure 4.2 for the case - - iT (maximum negative position

of the saddle point). On the other hand, if 1T/2 < e < ir, then the inte-

gration path in the kx plane must be below the real axis and map into a

curve to the right of the mapping of the real axis. Because the path lies

to the right of the mapped real axis, as - -i it is possible to sweep

a region between the real axis mapping and the path of integration which

causes non-decaying components. However we observe that there are no

zeros of G(a) in this region of the a plane. Hence the only possible

singularity is the pole at (k2sinct+klcose) - 0. Though it appears to be

anomalous that a field contributor can becom e unbounded as one moves to an

infinite distance from the diffracting edge of the half-plane, this can

occur and is interpreted as follows. For 7/2 < 9, the incident field

along the interface becomes unbounded as x-*-. For 0 <o (which is the

angle that the refracted wavefront makes with the half-plane), the obser-

vation direction cuts across planes of growing amplitude as p- . There-

fore this nonphysical behavior of the pole is due to the fact that a plane

wave in a lossy medium does, in fact, correspond to a wave which decays

as it propagates in from P - -. We note that the pole arising from the

root of (k2sinrA+klcos6 - 0) corresponds to the geometrical optics pole in

the half-plane diffraction probl~m in homogeneous space and gives rise to

the simple transmitted field for the unobscured portion of the half space

below the interface. It is therefore clear that, with the exception of

the geometrical optics field, this problem can only give rise to decaying,

outgoing fields in the transmitted region.

11 _ _ _ _ _ _ __ _ _ _ _ _ _ _
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4.1.3 Identification of Asymptotically Dominant Singularities

In diffraction problems where the media are lossless, the exponen-

tial behavior of dominant field contributors is that of a propagating

wave and the asymptotically dominant field terms are identified based on

the exponential decay of the non-propagating factor. The presence of

material loss introduces a new complexity in that all of the singulari-

ties are complex-valued and exponential decay occurs concomitantly with

propagation. We therefore must identify relative rates of this exponen-

tial decay for the various contributors and identify the dominant terms.

Since all observation angles contain the diffracted field due to

the steepest descent integral, it is useful in the spirit of the above

analysis to compare the exponential decay of swept singularity waves to

that of the SDP diffraction wave as one moves radially away from the edge

of the PEC screen. Saddle point analysis allows an asymptotic approxi-

mation of the SDP integral to be made for P (see Appendix B) yield-

ing

e EOkobsinsin (kobO) -Jk ob
[e zsaddle i G+ (-k cose)G+ (-k bcos)(k obcos + kIcose) e

poin+ (4.1.8)

where is the principal value, and kob ' k2 ' Note that this

is the leading term in the asymptotic expansion of the saddlepoint inte-

gral and represents the contribution to the radiation field (varies as

P 1/ 2) of that integral. For observation angles in the vicinity of the
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interface, the dominant contribution is a lateral wave type field (var-
-3/2

ies as P ) and the relative significance of these two fields is dis-

cussed in Appendix B.

The dominant far field contributor (or contributors) is determined

by identifying regions in the a plane which have greater or lesser expo-

nential decay than Re (-jk 2P). For 0, this region is bounded by a

contour defined by

Re[-jk 2sin (a-) -k21

- k 21sin u • cosh v + k 2rcos u.sinh v - -k2(

where c - u+j v. After algebraic manipulations we have

1 ± coslu'l . I+

sinh v sin u' , (4.1.10)[k r  ki 2u '
[2r sin 2u' 21 Cos 2U

where u' - (u-u u is the position of the saddle point. Note the
S s

following properties:

Use (+) for the (v > 0) leg ( bounded by - (Tr-u )< u'< (?T-u ))
res - - res

Use (-) for the (v < 0) leg (bounded by -u < u'< u whereres-- - res

Ures = tan-1 (k21/k2r), principal value).

The double sign on the square root reflects the fact that there are two

curves in the a plane on which the exponential decay is the same as that

of the saddle point contribution.
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A typical plot of the equal decay contours derived above is shown

in Figure 4.3. It is seen that these contours divide the a plane into

four regions in which the exponential decay is either greater than that

at the saddle point or less than it. Clearly the SDP will lie in the two

regions of greater decay and therefore identify them. Several observa-

tions are appropriate. While the expression for the equal decay curves

was derived for 0, it applies for any with u replaced by (u -

in (4.1.9). These curves cross the real a axis at the saddle point just

as the SDP does and therefore the entire set of curves (SDP, equal decay

contours) can be considered a template which slides across the a plane

as 0 moves from 0 to -7r. We refer to this collection of curves as the

dominance template.

The foregoing analysis allows the determination of the most signif-

icant contributors in a particular problem for any specific angle of

observation. Most of the a plane lies in the region of greater decay

than the saddle point value and hence any singularities occurring there

can be ignored since the greater exponential decay implies asymptotic

insignificance as P . . On the other hand, if a singularity lies in

the region of lesser decay, then the saddle point value can be ignored.

Only the dominant contribution needs to be considered asymptotically in

the far field, therefore this analysis of the significance of the vari-

ous contributors is fundamental to the problem for observation points

which are far removed from the edge of the PEC half-plane. Note that the

equal decay contours are functions only of k2 and do not involve k1 .
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As k 2i 0 (medium 2 becomes lossless), one equal decay contour co-

incides with the real o axis in the vicinity of the saddle point. Thus,

in the lossless case, the geometrical optics pole and the diffracted

(saddle point) contribution manifest the same exponential decay rates,

i.e. no decay. For lossy media the two contributions will not be of the

same asymptotic order since the exponential decay rates will be differ-

ent. For k21 << k2r the region of exponential dominance over the saddle

point contribution collapses to a narrowly defined region. Then it is

approximately true that any singularity off the real cL axis can be ig-

nored. However as k21 increases, this is not valid and the significance

of the various regions of the a plane must be considered.

Another interesting question is to determine what portion of the

plane gives rise to outgoing waves and what portion gives rise to incom-

ing waves. These regions are separated by lines of zero phase given by

Im(-Jk 2sin(a-0) - -k 2rsn(u- )cosh v - k21cos(u-O)sinh v - 0 (4.1.11)

or for 0

* tanh v - -- tan u (4.1.12)

This is the equation for the mapping of the imaginary k axis onto the ax

plane and, in particular, it describes two loci shifted so that they

intersect the real a axis at u - u ± T /2 where u is the saddle pointS s

location. The region between these two lines has a negative phase change

as p increases (outgoing wave) while the region outside of these lines
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has a positive phase change (incoming wave).. This wave interpretation

can be incorporated into the dominance template discussed above as shown

in Figure 4.4.

Diffracted waves must manifest the phase progression of outgoing

waves only. Incoming waves are excluded in the solution process due to

the fact that the swept region characterized by incoming waves cannot

contain singularities. For example, Figure 4.5 shows the largest region

swept between the real axis and the SDP for 0 that violate outgoing

wave behavior. A similar plot can be made for IT - with the saddle

point at Ls=- /2. It is clear that the swept regions of outgoing waves

in these extreme cases lie in the mappings of the first and third quad-

rants of the original k plane. There are no singularities of the inter-x

face problem occurring in those quadrants.

Summarizing these results, we see that given a specific comp-

lex medium, k2, one can construct a dominance template which centers on

the saddle point and divides the a plane into quadrants of exponential

growth or decay relative to the diffraction term of the saddle point con-

tribution. The dominant contribution can be determined graphically (or

by simple algorithms on the computer). Since the only possible scattered

waves are decaying, outgoing waves, one can infer that no singularities

arise in regions of the a plane which would violate this property.

The contribution of the geometrical optics pole which arises from

the factor (k2sinc&+klcos6) in the denominator of the inversion integral

is given as follows (see Appendix B):
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Figure 4.4. Dominance contours supplemented with phase behavior.
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[e 2E0 sine -j(k c ) sin( r+ ltl) , (4.1.13)

z geom. 7 1iG(-k cos3 )
optics
pole

where cr is the pole location and kob = k2, G(O) = (3.4.1).

Also the contribution at the root of G_(0) is given as follows (see Ap-

pendix B):

[e 2E 0sine G+(kbin ) I[e]o _)& LlG+( cS8) (kbsincr tkbinr
z roo ni G+ (-k1 cos) (kob sntr + k Icose)G'(k obsinir

-j(k b) sin(ar+L{l) 
, (4.1.14)

x e

where a is the root location, kob k2 , Wb ' pp

and 2
2 2
Ob 2PP tan CL

r) ob opp

Note that when i = 'P2 no root of G- occurs (see (3.4.4).

4.1.4 Branch Cut Contribution

In order to consider the evaluation of the branch cut contribution,

it is necessary to review (4.1.8,13,14) and consider how the function

G+(a) is to be evaluated. From (3.4.17), we observe that the factor

/'-7iT exhibits a simple square root branch cut running from k= kl,

while the exponential factor has a branch cut running from kI t- k2. As

noted in section 3.4, the factor G2(k.) (which factorizes positively into

, , , , I I I 'i I III I ~ p .. ... . . . . .. . ....
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the exponential in (3.4.17)) is a two-sheeted function; and if the P and
1

32 cuts are chosen to coincide, they can be viewed as annihilating each

another, resulting in a finite branch cut. If the S and B branch cuts
1 2

of G+ (k ) are allowed to separate, we can view the process as evolvingfG2 x

as shown in Figure 4.6. If the result shown in Figure 4.6c is combined

+with G (k ), the derived value of G (k ) uses the simple hyperbolic
lx + X

values for 3 and 52" However it is difficult to see how to perform this

continuation in light of the integral factorization available in (3.4.17).

The simplest procedure is to view G (k) as follows:+ x

(3.4.18);for Im(kx)>O or if Im(kx)-0, then Re(kx)<O

G+(k = (4.1.15)
G(k x)/G(k) G(kx)/G+(-kx);otherwise

where G(k )=(3.4.1) and G+(-k )=(3.4.18)
x + x

Here we are assuming that the branch cuts for 3i and S2 do not cross the

real k axis. Observe that G +(-k x ) is unambiguously given by the inte-

gral factorization formula for kx in the lower half of the complex kx

plane. The branch cut behavior is contained in the factor G(k x ) and can

be dealt with conveniently in this form since the effect of shifting the

branch cuts is manifest directly in G(k as the functions 21 and 62

It is useful to recognize this method of evaluating G+(k ) since

in the process of evaluating the branch cut contribution to the radi-

ation integral (4.1.3), it is necessary to deform the 1 branch cut and

the various singularity contributors can be swept by the branch cut.

When a contributor is swept, the evaluation procedure given in (4.1.15)

L . ...........
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allows the factor 3, given in G(k ) to be easily determined.

The development of the asymptotic formula for the branch cut contri-

bution for kx = -k1 follows the analysis of Felsen and Marcuvitz (1973a).

It requires that the branch cut from kx 
= -k1 be deformed in the a plane

so that it lies along the steepest descent path (SDPb) from the branch

point. It must be emphasized that the SDPb changes as the saddle point

moves. The locus along which the SDPb lies is a line of constant phase

of the exponential and points on this line have Lhe greatest possible

change in the magnitude of the exponential factor. Hence these lines are

contours in the a plane where (4.1.11) equals a constant y < 0. Figure

4.7 shows such a set of phase contours in the a plane. Clearly these

phase contours move with the saddle point (since y =-k2r corresponds to

the SDP). Hence the SDPb , which must lie on the phase contour running

through the branch point corresponding to kx = -k and be asymptotic to

the SDP through the saddle point, changes continuously as the saddle

point moves with varying observation angles. A detailed discussion of

the formulas describing these SDPb contours and the effect on the other

asymptotic contributors is given in Appendix C. We summarize below the

conclusions given there.

In deforming the branch cut in the a plane for the branch point cor-

responding to (-k I) to a line along the SDPb) we may be forced to cross a

singularity contributor, ax' The result is that the value of BI(O ) which

we must use in the asymptotic formulas is given by

( a (ax))swepto- ( 6 1( ax))original hyperbolic definition'
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Figure 4.7. Contours of constant phase in the a plane
about the saddle point location.
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Looking at the asymptotic formulas (4.1.8,14) we see that G+(-k1cose)

must be evaluated. One of the results of Appendix C is that the geomet-

rical optics pole for an observation point in the transmission region

(y < 0) is never swept by the branch cut. Hence G+(-klcose) may be

evaluated in all cases using the original definition of a1(Section 2.2).

Also, in the process of deforming the branch cut for B1 to the SDPb

configuration, a portion of the lower sheet of G_(c) is brought onto the

top sheet. This may result in the root of G_(a) being brought onto the

top sheet, a detail which is dealt with in Appendix C.

Having performed this deformation we observe that when the branch

point is crossed, the entire cut is crossed. The branch cut contrib-

ution is now amenable to an asymptotic analysis somewhat similar to the

usual steepest descent analysis about the saddle point. The rather

complicated result is stated below:

11ob G (-k o )V T PV ex +

[ezbranch 3/2

cut, 1 O (ko-klcose)o S PkobCOs(¢< +
-k opp

opp

-j(kobP) sin(ab+W ) , (4.1.16)

where (k o Ib ) - (k2' .1 2; (k op POpp) (k 1 P.); v is the principal

value; 6+ is the angle of the SDP b from (b (corresponds to k x -kopp

in the ot plane relative to a ray from cLbin the positive real direction,

where 9+ > [Arg(k o -Arg(k bcos( otb))], modulo 2Tr (that is, if
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Arg(kp) - Arg(k 'cos(cb))] = ,
g then 8 < + < g +27).

OPP ob b g g + &

4.1.5 Uniform Asymptotic Expansion

In general the wavenumbers for the two media involved in the inter-

face problem have different loss tangents and as a result will not lie

on a common line in the kx plane running through the origin. One expects

that the geometrical optics pole will lie on a curve in the a plane which

only intersects the saddle point locus at the origin. As a result the

asymptotic expansion of the radiation integral given in (4.1.8) is an ade-

quate representation for observation point sufficiently removed from the

edge of the PEC half-plane.

In practice one would like to have an asymptotic form which is appli-

cable at smaller radii. This necessitates utilizing a uniform asymptotic

expansion of the steepest descent integral. The resulting expression is

given as follows:

t

J~
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V - iE -jk
[el -Ij14 E0 i _e obI
z saddle = r i -e
point,
g.o. pole

1 kob sinlc$
co-s)PV G +(-k .cos8)"G+(-klcos) (kob sCOS + klcose)

1 o{ ob 1 obo1

(4.1.17)

+ _ 1

- P G(klCOS)

PV a -a I

for Is ob Vsn(p -a )2)>0, where k ob = k 2, 5 is s the saddle

tion, Q(y) is the complementary error function defined by

o 
2

Q(Y) - J e-X dx (4.1. 17.a)

y

The first term in the braces in (4.1.17) is the original non-uniform ex-

panson contribution (4.1.8).

iob p-s

pon loato inteapaeadapi h emtia pispl oa
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4.1.6 Remarks Concerning the Asymptotic Analysis

It is clear from the form of these asymptotic constituents to the

far field that their exponential factors depend on the location of the

singularities causing them as stated earlier regarding the dominance

analysis of the various contributors. Extreme care must be exercised in

this analysis to determine whether or not the root of G(a) occurs on

the top sheet of the integrand used for the asymptotic analysis. The

expression for the saddle point contribution given in (4.1.8) is the non-

uniform asymptotic version where no singularities are assumed to lie in

the vicinity of the saddle point. For the transmitted region (as long as

k2/k 1is not purely real) this is the case. In the homogeneous half-plane

problem, the geometrical optics pole (a function of e, the angle of inci-

dence) lies on the real a axis between (-Tr/2,7/2). Therefore as the ob-

servation angle 0 approaches the shadow boundary (which is in the trans-

mission region), the saddle point expansion becomes unbounded due to the

breakdown of the asymptotic analysis. To avoid this singular behavior,

several uniform asymptotic expansions are available for a pole in the vi-

cinity of the saddle point. However, in the interface problem when k2/k,

the contrast ratio of the media, has a significant imaginary part rela-

tive to the real part, then the geometrical optics pole follows a locus

as a function of e(the angle of incidence) which is off the real a axis

and crosses it at a - 0. Nonetheless, a uniform asymptotic expansion is

given in (4.1.17) to allow a more accurate evaluation of the saddle point

contribution for small observation radius.
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An interesting physical interpretation can be given to the smooth

behavior of the steepest descent integral when the observation angle

brings the saddle point near the geometrical optics pole (Felsen(1982)).

In the well-understood problem of diffraction by a half-plane residing

in a homogeneous medium, the singular behavior of the saddle point con-

tribution (diffracted wave) in the vicinity of the boundary between the

region lit by the incident wave and that shadowed by the half-plane

(hence, the shadow boundary) clearly indicates the physical importance

of the shadow boundary. Therefore, the fact that the contribution of

the diffracted term is well-behaved for distant observation points near

the p3sition of the shadow boundary in the interface problem means that

the complex contrast ratio causes a "smearing" of the shadow boundary in-

to a smooth transition from the lit space to the shadowed space. This

is true except for the case of normal incidence when the geometrical op-

tics pole is located at a - 0. Therefore the complexity of uniform asymp-

totic analysis is not warranted in the transmission region for distant

p oints of observation. Equations describing the locus of the geometrical

optics pole are given in Appendix A.

It is important to realize that in some problems where the medium

of the transmitted region is significantly lossy, it is quite possible

for the diffraction term arising from the saddle point to be dominated

by one of the terms arising from the singularities mentioned for some ob-

servation angles. It is not possible to discard these field constitu-

ents until the problem is specified and the positions of the singularities

K _______________________
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is determined. The saddle point contribution is a homogeneous cylindri-

cal wave which appears to emanate from the edge of the PEC half-plane.

The other waves are, in fact, inhomogeneous plane waves which exist in a

region bounded by a ray (extending from the edge of the PEC at a critical

angle) and the interface plane and do not appear to come from the edge.

This can be seen by considering the exponential

-j (k 2 P) sin( -$)
e

where p is the normalized distance from the edge, qP is the observation

angle (-T < 0 < 0) and cc is the position of the mode singularity. Consi-

dering the constant phase planes, we have the following:

Im[-J(k2p) sin(c-O)l - Im[ jk y - Jkx] = [kyrY - ax] - 0 (4.1.18)

where kx - k sina - +j andk k 2r-jk 2-k 2rk 2>0. Recognizing

that the direction which is normal to a constant phase plane (given by e p)

is characterized by tane - I/(-dy/dx) - k / , we have
p yr

t k21tan u •tanh v - k2r

P k 21tanh v + k2rtan uI
where ot - u+jv, 8 is the apparent angle of phase progression relativep

to the interface (9 M 0 is the positive x direction) and does not referP

to the edge of the half-plane.

A similar derivation for the constant amplitude planes, ignoring

algebraic decay, leads to an angle ea of apparent maximum decay:

_____ _____ ____

...........................
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ta =k 2rtan u .tanh v + k21
tane k 2 (4.1.20)

a k 2r tanh v + k 2tan u

It is clear from these expressions that, in general e 4 P If k2 is' a p"2

taken as lossless (k2i ' 0), it is apparent that the two directions are

normal to each other, the usual property of inhcmogeneous plane waves in

a lossless medium.

4.2 Solution in the Reflection Region (y > 0)

From the solution of the Wiener-Hopf equation we have the Fourier

transform for the total electric field along the interface. An expedi-

ent way of constructing the solution in the upper half space is to consi-

der the total field as composed of three terms: the incident field, the

short circuit reflected field, and the field due to the scattering from

the interface structures. The sum of the incident field and the short

circuit reflected field has a null at the interface by definition. If

we now inc'ude that field which gives the correct tangential electric

field on the interface, then the solution is complete. The field which

we must construct below is the field due to e z on the interface. This

is simply the field in the aperture radiating into the upper region.

Therefore the inversion integral is closely related to that for the tran-

smission region,

e (X,Y) " e 1. y +k x dk (4.2.1)
Sk (k+j kkcos) *G (k x x

x

'i _____
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for y >0 where c is in the strip of analyticity of the Wiener-Hopf formu-

lation and where

-jE 0sine

'T G +(-k1 cos)

and

1 1 x

At this point the mapping k. = k sina is used and the resulting equation

is found to be

ef klCosa -j(kl) sin0+t),

G_(k 1 sina) .lsi 1 e dc , (4.2.2)

where 0 < < T.

The analysis fol1',9 in the same way as in the transmitted case.

The asymptotic forms there are valid here also if (kob, Iob) are taken as

(kV1  ) and (k pp, iOPP) are taken as (k2,.i2). We observe that the saddle

point is now given by a = 7/2-(p, so that we may take a = r/2-1 1 as
s S

characterizing the saddle point in both half space inversion integrals.

One significant difference between the two solutions is that the geometri-

cal optics pole now moves along the real a axis between (-IT/2,Tr/2) re-

gardless of the medium parameters. Hence the reflection boundary will be

a distinct physical feature of the problem as in homogeneous problem. The

problem of a uniform asymptotic expansion for the saddle point integral

in the vicinity of the geometrical optics pole is an issue here. There-

.. .. ....__ _ _..._. .. ....
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fore the uniform asymptotic expansion given in (4.1.17) with kob= k1

must be used when the saddle point is in the vicinity of the geometrical

optics pole to avoid the singularity resulting from the non-uniform expa-

sion given in (4.1.8).

4.3 Validation and Sample Data

It is clear that the solution of the interface problem should reduce

to the diffraction from a half-plane in a homogeneous space as the media

parameters limit to each other. It is also clear that the numerical

evaluation of the factorization integral in (3.4.18) will become unstable

as the two media limit to the homogeneous case since the integration path

vanishes while the integrand becomes unbounded. As a test of the algo-

rithm, the case shown below was evaluated on a computer:

i.-j.001, Ei 1. resulting in kI = l.-j.000500 (4.3.1)

12= l.-j.0003, E2 = l.-j.001 resulting in k, = 1.-j.000650

Incidence angle, e = 450 and observation radius, = 5 "

in free space.

The resulting evaluation of k4.1.8) for the cylindrical wave of the

'I fdiffracted field was compared with the Keller Oiffraction coefficient.

Plots of the two diffracted field computations were found to overlay one

another except in the vicinity of the observation angle, - 180'. The

modulus of the diffracted field for the parameters given above is plotted

in Figure 4.8 as a function of the observation angle, $, taken with res-

pect to the illuminated side of the PEC half-plane where 0*<t<360*.

The anomaly in the vicinity of t = 1800 arises from the vanishing

-7-
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of the leading term in the asymptotic expansion of the steepest descent

integral about the saddle point as discussed in Appendix B. As indicated

there, this failure of the leading term to suffice in the asymptotic exp-

ansion is localized to roughly a ± 2* sector about the interface in the

present example. As the contrast between the media is increased, the de-

parture from the Keller diffraction coefficient around P 180* is en-

hanced. This behavior is seen in Figure 4.9.

In Figure 4.9 another feature of the diffracted field is apparent,

namely, the spur occuring at - 1560. For this configuration the angle

of total internal reflection is c - 24. The spur occurs at this criti-

cal angle and always lies in the more dense medium (i.e., that medium

having the larger magnitude of the real part of the complex wave

numberl. Figure 4.10 is the same configuration as in Figure 4.9 but view-

ed at an observation radius of p - 50 A from the edge of the PEC half-

plane. It is evident that the spur is diminished as the observation ra-

dius increases.

The spur arises when the two media have almost the same loss tangent.

In that case the branch point for the less dense medium (-k2 for the ex-

ample shown in Figure 4.10) approaches the line in the kx plane which con-

nects the branch point of the denser medium (-k to the origin. This

line segment maps into the line segment between a - -7r/2 and a - 0 which

is the locus of the saddle point. In essence, the spur represents the ef-

fect of the branch point due to (-k2) on the saddle point integral as the

saddle point passes near the branch point.

W1.
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The validity of the asymptotic expansion is questionable for obser-

vation angles near the spur unless P is large. In order to determine

under what conditions the asymptotic saddle point expansion is valid,

it is necessary to establish a minimum limit for the observation radius,

p. This can be done by considering the value of the exponential enve-

lope of the integrand in the saddle point integral. We may consider a

ci'cular region in che a plane which is centered on the saddle point

and has the branch point on its boundary (the region of validity for the

Taylor's series expansion of the integrand). If we require the magnitude

of the exponenu in the integrand to drop to one tenth of its value at the

saddle point then it can be shown that the smallest observation radius

for which the simple asymptotic value of the saddle point integral is

valid is given by

P P .73/r2 (4.3.2)

where P is the observation radius in wavelengths in the medium containing

the observation point, r is the separation of the branch point and the

saddle point in the a plane.

It must be said, however, that the spur is a valid phenomenon in

the far field of the diffraction pattern and represents an interaction

between the radiation portion of the saddle point contribution and the

branch point of the opposing medium. If the loss tangents of the two

media are fixed and the contrast is decreased, the spur is seen to move

toward c - 180.

A typical situation is shown in Figure 4.11, where all the terms con-

1
Ii
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tributing to the scattered field are shown. The geometrical optics field

contributes in the region bounded by the reflection and shadow boundaries

of geometrical optics. In the reflection region (y > 0) the total geome-

trical optics field is composed of the sum of the short circuit field

(that due to the incident plane wave reflecting off of the interface plane

where the PEC half-plane has been extended to cover the aperture) and the

scattered field of the geometrical optics pole. In the portion of the

reflection region which lies beyond the reflection boundary (it-e < p < e)

these two constituents must sum to equal the field that would exist with

no half-plane present. As a result the field of the geometrical optics

pole can have a magnitude greater than one in a lossless configuration

due to phasing between the short circuit and geometrical optics pole

fields.

In the transmitted region (y < 0) the geometrical optics pole is the

total geometrical optics field. Since we require the total tangential

fields to be continuous across the interface and the short circuit field

vanishes at the interface, it is seen that constituents of different

radial behavior must be continuous across the interface.

The decrease in the geometrical optics field as 0 moves away from

the interface is a manifestation of the greater loss in medium 2 since

the ray must attenuate more quickly as the ray path in medium 2 increa-

ses. If medium I is much more lossy than medium 2, it is possible that

the geometrical optics pole field will actually increase in magnitude

with increasing 0 from the interface. It is noted that when medium 1 is

more dense than medium 2 and the angle of incidence exceeds the critical

.... ,. ,. , ., , _ _ _ . . . . .- , , -. _
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angle of total internal reflection, a cutoff effect of the diffracted

field structure is seen in medium 2.

The lateral wave field arises from the branch cut integral and is

seen to lie in the more dense medium with its peak magnitude occurring

near the critical angle for internal reflection. As is seen in Figure

4.11, it seems probable that the mechanism which creates the spur on the

saddle point diffraction field represents some interaction with the la-

teral wave as both occur at approximately the same observation angle.

In Figure 4.12 the configuration of Figure 4.8 is shown versus

increasing radius. It is clear that the lateral wave suffers a larger

algebraic and exponential attenuation than the other contributors and

therefore decays more quickly with distance.

An interpretation of the phenomena may be offered to suggest the

physical mechanism which gives rise to them. The lateral wave has been

described in numerous places (Felsen and Marcuvitz (1973b,c), Felsen

(1967)) as the result of a ray which propagates along the media

interface in the less dense medium and leaks energy into the more dense

medium at the critical angle due to refraction of the ray. In these in-

terface problems one may visualize the initial scattering from the PEC

half-plane as launching a homogeneous cylindrical wave as in the diffrac-

tion from a PEC half-plane in a homogeneous medium. However the ray bun-

dle which propagates along the interface experiences precisely the same

environment as a lateral wave source ray. The differing phase velocity

of the two media refracts energy into the more dense medium as the source

I
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ray propagates and depletes the energy of the cylindrical diffraction

wave in the vicinity of the interface. The greater the contrast, the

greater the energy loss of the diffraction field, thereby minimizing the

scattered energy in the direction of the interface.

This viewpoint also explains the mechanism by which the lateral wave

is launched. One asks the following question: how can the diffracted

field propagate with ejklp in the upper region and e-jk2P in the lower

region along the interface and represent a valid solution to the boundary

value problem? Surely even an approximate solution will manifest

continuity of the tangential electric field across the interface. The

solution to this paradox lies in the realization that the radiation field

(which varies as P-4) arising from the asymptotic evaluation of the steep-

est descent integral at the saddle point vanishes along the interface

and the second term in the expansion is the leading term. Recognizing

-3/2
that both the saddle point and branch cut contributions vary as p but

with a propagation behavior of e-jk1P and e-jk 2
p respectively, one suspects

that the saddle point contribution for region I will equal the branch cut

contribution for region 2. This can be shown to be the case. Therefore

we see that the lateral wave contribution is essential along the inter-

face to match the saddle point contribution for the other medium and to

provide continuity of the total diffracted field across the interface.

This viewpoint would seem to explain the mathematical necessity of the

existence of the lateral ray to provide continuity of phase and attenua-

tion across the interface when combined with the saddle point contribu-

Ii
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tion. It also provides a useful device for estimating the magnitude of

the second term in the asymptotic expansion for the saddle point integral.

That is, the second term will equal the lateral wave term. Clearly for

P - 5 X this contribution is small as seen in the data presented below.

In Figures 4.13-4.18 sample data is presented for a number of possi-

ble media combinations. All media parameters are normalized to free space.

In all cases -M 12 = 1, the permeability of free space. Plots to the

left are associated with higher loss in medium 2, while those further

down are associated with increasing contrast (that is, the modulus of

2 /EI) between the two media . The data in Figure 4.13 serve as a

reference case where the angle of incidence is e - 450, the radius of ob-

servation is P - 5 Xin free space. The contrast ratio increases by a fac-

tor of three as one moves down and the ratio is one on the top row. It

is clear that increasing contrast causes the angle of refraction of the

geometrical optics ray to increase and causes the lateral wave peak to

shift away from the interface. Also a general flattening of the diffrac-

tion contribution from the saddle voint (particularly about the interface)

LS seen with increasing contrast . Increasing the loss of medium 2 is seen

primarily to attenuate the fields in the transmitted region.

Figure 4.14 is identical to Figure 4.13 but with the radius of

observation increased to p - 20 wavelengths in free space. The magni-

tude of the lateral wave in the case of no contrast (top row) is ex-

plained by noting that the middle picture depicts a case of almost equal

loss tangent in the two media. Clearly the branch point which gives rise
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to the lateral wave is nearer the real axis of the a plane than in the

two surrounding pictures on the top row of Figure 4.13. Therefore the

lateral wave contribution should be greater at a given observation ra-

dius. Also noticeable is the fact that the peak of the saddle point term

is greater on the reflection boundary than on the shadow boundary. In

fact, the peak on the reflection boundary is truly a singularity (of the

non-uniform asymptotic expansion) since the geometrical optics pole re-

sides on the real a axis for observation points in the incident medium.

The peak on the shadow boundary is not truly singular since the geometri-

cal optics pole will lie on the a axis only at a x 0 (4 900) for pro-

blems involving media with unequal loss tangents.

Figures 4.15 and 4.16 are given for comparison with Figure 4.13 and

depict the same case but with the incidence angle shifted to e - 30* and

60* respectively. As anticipated the shift in the reflection and shadow

boundaries is apparent. Figure 4.17 is included as an example where

medium 1 is essentially lossless (k M l.-j.00005). The second row in

this figure corresponds to a value of e2 such that Re(e 2 3 which is

typical of many plastic dielectric materials. The third row character-

izes medium 2 with Re(e 2 ) 9 which is near the value for ceramic dielec-

trics. In contrast to the earlier cases, Figure 4.18 depicts a case where

medium I is relatively dense (kI N 1.732-j.000029). The top row of this

figure represents a contrast ratio which is less than 1 ( - 1/3)

as opposed to equality as in all of the earlier figures. This implies a

critical angle of total internal reflection of about 55* and therefore the
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plot of this figure exhibits the phenomenon of total reflection.

Figure 4.19 depicts the case given by

S1 P 2 a 1

C1 - .-j.00001, kI - 1.-j.000005

e2- 3.-J.00001, k2 = 1.732-j.000003 
(4.3.3)

p - 5X in freespace

Unlike the earlier figures, this one shows the diffraction as the angle

of incidence increases from 15* to the maximum incidence angle for

the validity of the Wiener-Hopf analysis (-Im(kI cose ma) Im(k 2))

which for this case is emax = 1370.

It must be pointed out that in none of the data computed has the pole

due to the root of G significantly contributed to the field structure

in a problem. This pole is associated with the root of (3.4.1) and seems

to correspond to the Zenneck pole contributed since they both are roots

of the same equation. This pole contribution arises only when the branch

cut in the a plane exposes the pole. No clear determination has been

possible to extablish the actual existence of the contribution of this

term to the far field structure in a problem.

i 4.4. Interpretation of Results

The intent of the analysis in the study of the interface problem is

to provide a means for readily computing the various ray optic

contributors which arise and thus a means to apply the GTD to

configurations that contain features for which the interface problem is

.
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a suitable canonical geometry. It is desirable, therefore, to discuss

the scattered fields in physical configuration space (that is, the

spatial domain) and describe the relative magnitudes of the ray

contributors.

A ray representation of the contributing fields given by (4.1.8),

(4.1.13) and (4.1.16) is shown in Figure 4.20 where both media are

assumed to be lossless, and the lower medium is assumed to be the more

dense. That the Zenneck pole contribution (4.1.14) arises is a

possibility, too. As discussed above, however, no cases have been found

where it does arise, and no further address is made to it here.

As shown in Figure 4.20 the geometrical optics field in the upper

half space is given by the simple reflection off the PEC half-plane in

the region lying between the half-plane (at € - 0) and the reflection

boundary (at = crefl). For the remaining portion of the upper half

space the geometrical optics field is simply the reflection of the

incident wave off the media interface. In the lower medium the

transmitted wave is seen to bend to an angle Prefr and represents the

refraction of the incident wave at the media interface.

The presence of the edge of the half-plane launches two different

waves: an edge-diffracted wave and a lateral wave. The diffracted wave,

which appears as a cylindrical wave propagating away from the edge of

the PEC, is seen in all observation directions. When the media

parameters are equal, this wave is described by the Keller diffraction

coefficients (see Figure 4.8). However, as the contrast is increased,

the diffracted wave is quite different from the "Keller" wave (for

M 3
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example, the diffracted wave decreases to near zero as the observation

angle approaches the interface while the "Keller" wave does not, see

Figure 4.9).

The lateral wave is launched by the PEC half-plane. This wave is an

inhomogeneous plane wave which may be represented by a ray bundle

emanating from the edge and propagating along the interface in the less

dense medium, shedding energy into the more dense medium through

refraction. This energy thus propagates away from the interface at the

critical angle of total internal reflection, cr" This field is

present in the region of space between the boundary ray emanating from

the edge of the PEC half-plane at an angle of (c and the interface.
cr

The lateral wave is a plane wave which propagates in the direction Pcr

and is most intense along the boundary ray at cr" At a fixed radius

the magnitude of the lateral wave decays rapidly as the angle of

observation rotates from Pcr toward the interface. This lateral wave

is a unique manifestation in problems involving an interface between

media and does not occur unless dissimilar media are present in a

scattering configuration. Note that in Figure 4.20 the lateral wave is

shown propagating into the lower medium. This is due to the assumption

that the lower medium is more dense than the upper medium. Had the

reverse been assumed then the lateral wave would propagate into the

upper medium.

Figure 4.20 shows all the possible ray contributors at an

observation point. It is clear that when the upper medium is less

dense, any observation point in that medium will receive scattered

J _______________
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radiation from the geometrical optics field and the cylindrical edge-

diffracted field. The geometrical optics field will dominate in the

upper half space when lossless media are involved except for observation

points near the reflection boundary refl where the geometrical optics

field and the edge-diffracted field will be of the same magnitude. It

is noted that since the lower medium is assumed more dense, the lateral

wave contribution in the upper medium is quite small and evanescent in

nature, decaying away from the interface.

In the lower medium, it is seen that observation points in the

shadow region will only be illuminated by the edge-diffracted field.

For observation angles between the interface and the shadow boundary,

refr' the geometrical optics field contributes as does the edge-

diffracted field and the lateral wave contributes in the sector between

the interface and the ray at q , the critical angle of total internal
cr

reflection. Throughout most of the "lit" region of the lower medium the

dominant contributor is the geometrical optics field and the least

important contributor is the lateral wave field. However, the lateral

wave dominates the others in a small angular sector bounded by the ray

at ."In essence a pencil beam of lateral rays appears to be
cr

emanating from the edge roughly in the direction c and is the

dominant field contributor there. The hierarchy of contributions to the

total field is summarized in the table in Figure 4.21.

It is emphasized here that when the two media are different, the

edge-diffracted field is substantially different from that in the

homogeneous problem. The lateral wave also is a manifestation of the

Ii
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presence of the interface. Hence the field structure manifests markedly

different features from the classical problem of scattering from a half-

plane in a homogeneous medium.

When losses are introduced several interesting changes occur. Most

marked is the possibility that the dominance of the geometrical optics

field over the edge-diffracted field in the lower medium can reverse

when the constrast ratio of the media wave numbers (k 2/k I ) attains a

significant imaginary part. In this circumstance the locus of the

geometrical optics pole leaves the real axis in the angular spectral

plane and induces the exponential dominance of the edge-diffracted field

as discussed in Section 4.1.3. A second manifestation of the presence

of media loss is that the shadow boundary is seen to "smear" and lose

definition. Further, the significance of the lateral wave contribution

is strongly dependent on the contrast ratio (k 2/k I ) between the two

media. In some cases the lateral wave will dominate both the

geometrical optics wave and the edge-diffracted wave for observation

points sufficiently close to the interface.



CHAPTER V

THE SLAB PROBLEM

5.1 Statement of the Problem

The structure considered in this chapter is shown in Figure 5.1. A

dielectric slab of thickness t' with constitutive parameters (v',; ) is

embedded in a surrounding medium with constitutive parameters (p;,EI)

where 1 and 2 are real and C > Ei" The upper surface of the slab lies

in the plane y' = 0. Residing on the slab's upper surface is a PEC screen

covering the half-plane (x' > 0) with its edge at x' = 0. A plane wave is

incident from the upper half-space (y' > 0) and propagates toward the slab

at an angle e with respect to the PEC half-plane. The incident wave is

assumed to be polarized transverse magnetic (TM) to the z' axis. As in

the interface problem, we assume no variation in the z' direction and so

this is a strictly two-dimensional problem. It is noted that only loss-

less media are admitted. This stands in contrast to the general media

considered in the slab problem.

5.2 Wiener-Hopf Formulation over the PEC Half-Plane

For this problem we structure the integral equation over the PEC

half-plane rather than over the aperture (as in the interface problem)

to demonstrate the features of this formulation and how they contrast to

113
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the features of the aperture field formulation used to solve the inter-

face problem. The resulting integral equation is an electric field

integral equation (EFIE) which enforces that the total tangential elec-

tric field over the PEC screen be zero and has the electric current on

the screen as the unknown function. Since we are considering the TM

case we see that the surface current on the plane is purely z' directed

and therefore induces only the z' component of the magnetic vector po-

tential, Az . To formulate the integral equation, we must solve two asso-

ciated problems. First, the problem of a z' directed filamentary source

of z' directed electric current located on the upper surface of the slab

(at x' 0) is used to establish the Green's function for the integral

equation. Second, the problem of the plane wave incident on the slab with

the PEC screen removed is used to establish the source field for the inte-

gral equation. Having established these two functions, we form the EFIE,

NP Rad 1e (x') -e (x') - -J ,x0)dx0
V 27 'O (5.2.1)

for x' c (0,o)

NP
where ez  (x ) is the total field present due to a plane wave impinging

on the slab in the absence of the screen and k(x' ,z) is the Green's

function relating the z'-directed electric field on the interface elec-

tric field on the interface to a z'-directed current filament residing

there. It is convenient to consider this equation directly in the Fourier

IIi
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transform domain, therefore we extend the definition of the functions in

the manner described in section 2.4 to arrive at

aux) +bu ) (x)k(x ,x)dX for x'E(- ,)
- 2 + ~(5.2.2)

+

u , u N
where 0 + (xI) - jW(X') and a+ (x') - e (x' ) for x' > 0. Fourier trans-

forming this equation with respect to x', we arrive at

AU(kI) + B_(kI) - UD(kt) * K(k') (5.2.3)

for k' within a strip where all the functions are analytic. We now

establish the Fourier transform of the known functions, K and A.

We require the kernel k(x') in (5.2.2), that is, the Green's func-

tion relating the e field in the y'- 0 plane to a z'-directed filament of

current in that plane. Actually, since a Wiener-Hopf analysis is subse-

quently used, we need only the Fourier transform of this kernel. The

analysis for the transform is given in Whitmer (1948) and results in{a 1  , y' >0

a(k,) a 2  , -t' < Y' 0 (5.2.4)

a3 -

where
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[-jftl e JB2th -j8y[
a, e C e [ J (5.2.5.a)

-J6 I (y-'+t' 2S('+'

a2" e r c (5.2.5.b)

f2

a3  - 2,7_ e (5.2.5.c)

and
8' - B2

r -1 2
1 2

C 2

"B, +  p) (r e - - e1 2 _

The Green's function which we require for (5.2.3) is given by a

above with y' - 0. Hence we have

K(k)-28 F(k') (5.2.6)

where
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- - ;t' j I
8'- )e°  -_(Z + I )

F(k') 2B 1 2 ,e (5.2.7.a)
L( Bi)2ie 2 _ (Bi + B) 2 e jB2

or equivalently,

FW(k) - 12 it'r (5.2.7.b)

X I) t,)2 + ) + 2011+'l)Bat')cot( t'

An interesting observation can be made at this point regarding

(5.2.6). The poles of the Green's function characterize the surface

waves for the dielectric slab while the roots characterize the surface

waves of the problem of a slab with the upper surface covered by a PEC

screen. The problem treated here is a composite of these two problems

for the two regions x' < 0. One expects the solution for these two re-

gions to manifest the wave structure appropriate to each region in the

vicinity of the slab. As is seen later, one result of the Wiener-Hopf

analysis is that both roots and poles of (5.2.6) are singularities of

the integrand of the radiation integral and contribute in the two regions

x < 0 as expected.

To formulate All (k'), which is the Fourier transform of the incident

plane wave in the presence of the slab but with the PEC screen removed,

we must solve the requisite boundary value problem. The analysis is rela-

tively straightforward and the resulting fields are given below:

wib
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jk'(x'cose + y'sine) Jk'(x'cose - y'sin6)
E0e + A e , y' >0

Jk'(x'cos 6 + y'sine) Jk'(x'cos 9 - y'sin8)
e2 N B e + C e 2 -t<y1.10

D Jki(x'cosO + y'sinO)

(5.2.8)

where k i cos(e)-k cos(9 2 ) and 9,02 are the ray directions for the reflec-

ted and transmitted ray respectively from the plane of the slab. The

constants in (5.2.8) are

A - -E0 + B + C (5.2.9.a)

sn+sine2
ri9 i j~ 'sin9] 2E sine

B je, (5.2.9.b)

[sine sine2S - -J2kt'sin2
C -B ni I -j2kI e 2  (5.2.9.c)

s e + sin82

11
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21 sine2  J(k'sine + k sine2 )to
D 2Bln  snZ, 2' e 12(5.2.9.d)(sine +sine 2  T1

where

i 2 2 jk s sine2 -jk4t'sinl

sie sn 2  2 jk' 2  sine 'en" + •- - - I

L j 2

If y' is set to zero in (5.2.8) and the resulting function is then Four-

ier transformed (leading to a semi-infinite integral from x' - 0 to

x' - 0), the resulting transform is

Au(k) F' (5.2.10)
+ x 2 '-7 (k' + k'cos 6)

x 1

where E0 is the magnitude of the incident plane wave

inc E Jk'(x'cose + y'sine) 1
e0 E e and F' - F(k' k'cose).

Applying the normalizations defined in section 2.5, we arrive at the

following form for the Wiener-Hopf equation:

A+(k ) + B_(kc) - D+(kx) G(k ) (5.2.11)

where
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j Fe Eo

A+(kx) - (k + k0S9) ,F - F(kx M klcoset)
x ( 1 oe 9

B_(k x) - unknown function

P (k WU J (k. kx), Jz(ko kx) - F{j(x')}

G(kx) - F(k )/1

5.3 Factorization of G(k

The next step in the Wiener-Hopf analysis is the factorization of

G(k) given in (5.2.11). This function is composed of two factors which

are considered separately, that is, 1I/ and F(k2. We see that (11i)

factorizes by inspection as in (3.4.3). Therefore we concentrate on the

factorization of F through the formal integral factorization formula

given in (3.4.6).

To meet the hypothesis of the integral factorization, we require

that F(k) 1 uniformly within the Wiener-Hopf strip of analyticity as

[ l -9 where k io+jT. We observe from (5.2.7.a) that as Ikx +mon
x

the top sheet of F (where a, and 62 assume the original definition of Sec-

tion 2.2),

Re(-J 2 t)

and therefore F ~U 1+62)e + 2

F L -- 2 )2e2J t 2]
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However u 3 u 47Y ± k such that Im(S) < 0 as I k . There-

fore F nu 1, as kxI-0 . We observe that even if we move to k -x along
x

the hyperbolic a2 branch cut (and therefore Re(-ja 2t) = 0), again F I I as

the coefficient ($1-2) -) 0. It is clear that F - 1 as Ikl-) - anywhere

on the top sheet.

We may therefore perform the integral factorization of F and it will

apply along the real k axis since the Wiener-Hopf strip collapses to thex

real axis. It is necessary to consider the definition of ln(F) which ap-

pears in the factorization formula (3.4.6). In order to establish an

acceptable definition, we must consider in detail the behavior of F(k )
x

in the complex k plane.x

The details of the behavior of F are essentially the same as those

for the Green's function of the slab problem and have been considered by

several authors (e.g. Whitmer (1948), Barone (1956), Collin (1960)). The

important facts concerning F are presented below and in Appendix D.

The points k - ± k will be branch points of F due to the function

1 However, k= ± k2 are not branch points. Observe that F is, in fact,

an even function of B2 If we consider a path encircling k2 in the k

plane, we observe that g2 -2 but F - F. One can make the observation

here that the Fourier transforms of the Green's functions for the slab

problem and the interface problem exhibit branch points at the wave num-

bers for the media which span a half-space but do not exhibit branch

points for the media whose extent in the y direction is finite (that is,

the slab medium). Therefore the only branch points of F lie at kx  ± k1 .
xJ
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In addition to the branch point singularities, F also has poles

which occur at the roots of the denominator of F. These roots are consi-

dered in Appendix D and they are found to lie on the real k axis betweenx

ki and k2 (and therefore, by symmetry, between -k2 and -kl). Interspersed

alternately between the poles of F are roots of F due to roots of the nu-

merator of F (also constrained to the real k axis between (+kl,+k 2 ) and

(-k2,kl The number of poles and zeros is a monotonically increasing

function of (a - tnormalized values). No roots or poles of F exist

off of the real axis between (-k2 ,-k1 ) and between (+kI ,+k2 ). If the
interval (k1 , k2) on the positive real k axis is considered, the typical

2x

distribution of the singularities of ln[F] is shown in Figure 5.2.

Consider F as given in (5.2.7.b). Since k and k2 lie on the posi-

tive real k x axis with k 2 > k, we observe that values of kx in the inter-

val (kl, k 2) must have = -j c(k x ) and 2 a + (k x ) where c, are po-

sitive real functions. Substituting for 1and $2 in (5.2.7.b), we see

that F is purely real. Therefore if we consider the principal value of

the logarithm for ln(F), the branch cuts required will connect respective

roots with poles as shown in Figure 5.2 and lie on the real kx axis. The

logarithmic branch cuts are restricted to lie on (kl,k2 ) and similarly

on (-k 2 ,-k1). We recall that F 1 as Ikx] 1, so there are no logarith-

mic branch cuts running to kx a 0. It can be shown that a path in the kx

plane which encircles a pole and its adjacent root will not suffer an in-

crementing of the argument of F as the value of kx moves around the path.

Therefore we have adequately described ln(F) with the branch cuts
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KI  K2

FOR 0<r/2 : 0--K C

V/2i " < < : C3 O]

7/<a<3v/2: Ov O ,X 0

Branch cut of the logarithm

0 Root of F (and branch point of in[F])

X Pole of F (and branch point of ln[F))

Figure 5.2. Depiction of the branch cuts of ln[F] due to
the root and pole progression of the function
F in (5.2.7) as the thickness of the slab

increases (a V 2- i)t2 )

II
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described above using the principal value of the logarithm.

The integral factorization of F is given as

F(k)neF d( forT- Im~k x) = 0 (5.3.1)+(k x ) =exp 2T - 6 o

where the path of integration is indented below 6 = k as shown in Figure
x

5.3. As noted above F(kx ) - I uniformly for kxj-L -, hence we can deform

the path of integration of (5.3.1) to that shown in Figure 5.4. It is

clear that with this deformed path

£n(F) d6 - j2Tr Zn[F(k ) u(a) + j2TrH(k x ) (5.3.2)
j -kx

where u(c) = 1 =0 with a-Re(k )

0 C, < 0

J.
I r Z[F( I d6

and H(k ) -- j f 6

x 2i~j

Therefore,

F+(kx) = [F(kx)l U(a) .exp{H(kx)} for Im(k) 0. (5.3.3)

Let us consider the behavior of (5.3.2) for kx off of the real

axis. Since F is an even function, the integral can be reduced to

Ei x 6 kJ n(F) d6 .(5.3.4)
£ )d f2kx  62-k2

x0 x

Since ln(F(6)) - 0 as 161 -  and the integration path is removed from

.. .. _ _ _ _ _... . ...__ _ _.. ... ..__•_ _-_-
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INTEGRAT ION

-K2  -K1

Figure 5.3. Integration path for F+.
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INTEGRATION
PATH

-K 2  -KI Kx

KI  K2

Figure 5.4. Deformed integration path for F+.
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any singularities of the integrand (as long as k is off of the imaginary
x

5 axis), it is seen that

ZnF < M/16 2k21

for a suitably chosen constant M. Now the right hand side of (5.3.4) can

be partitioned as fJ[21m(kx)] fJ0

0 j(21m(k )
The first integral is clearly convergent for any k and for the second.

M M MM_< M <

162 -k21 - 16-k x.1 1 - [11'161

Therefore (5.3.4) is uniformly convergent and is a regular function for

k off of the imaginary 6 axis (see Mittra and Lee(1971), section 3.3).x

Hence if kx is any point in the complex plane, then (5.3.2) applies and

is the analytic continuation of the exponential factor of F+(kx). Also

(5.3.3) is the valid expression for the factorization of F for all points

in the kx plane.

Observe that with the expression given in (5.3.3), it is unneces-

sary to be concerned with the detailed behavior of the roots and poles of

the function F(k x) in evaluating the integral H(kx). It is a straight-

forward operation to parameterize (5.3.4) using 6 j cot(Trt/2), for t on

the interval (0, 1), to arrive at

0
2k f nF 6=Ax' j kn{F[5(t)]} d

: k6 2 _k2  dS m 2k J -o t( k J 2 sin~62 xr~ 2 2_k
60 x t-i -cot kX si

5-0 2-

1

= -i lTk Cn F dt (5.3.5)
+ [k sin 1T]2

tM o
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Observe that (5.3.5) is an odd function of kx implying that

exp{(5.3.5)} - 1 for k = 0.x

Some interesting observations can be made concerning the factoriza-

tion process and how it works. In electromagnetics problems one often

encounters a function G(E) which must be factorized and satisfies the

following conditions:

1. G is an even function of E.

2. The Wiener-Hopf strip includes the real C axis.

3. G meets the conditions of the integral factorization
theorem.

Then

for s in the Wiener-Hopf strip and Im(S)> 0. When E is extended into the

rest of the complex plane, we have

exp -- _( -] , Im(e) > o

G () - (5.3.7)

G(-_) ,x 6 Im() < 0
-E

t i r
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If we consider only the integral in the exponential, then we observe that

it must be an odd function of .
CO_

H(c)r Zn G(6) d6 ..- (-6 f
6-)-J -[(-6)-cl

. J ,n G(-y) d'y - ()

H(-c) - - H(E) (5.3.8)

Therefore if we consider an C such that Im(e)> 0, then we have

G +(-) - G(-c) •exp[H(-c)] - G(E) •exp[-H(c)] - G(E)/G (). (5.3.9)

Therefore if we accept G (c) - G +(- ) (as can be seen directly from the

formula for the function G ), then

G•() *G (c) - G(E)

where G is analytic in the upper half-plane and G is analytic in the

lower half-plane. Since H(E) is analytic and therefore bounded, G+ and

G will be non-zero in their respective half-planes of analyticity.

We collect below the results for the factorization of the slab

problem:

G +(k x) F+ (kx) I - kx

G_ (k) - F_ (k )/ +k (5.3.10)
- X x 1 X

where the square root functions are interpreted as in section 2.2 and

t

ii2 --
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F(k ) • exp[H(k)] Re(k ) > 0

F +(k) - (5.3.10.a)

exp[H(kx)] , Re(k)x < 0

where

H(k) 2 + (kst)]} dt (5.3.10.b)

S(t) - j cotI t

F(k ) - (5.2.7.b) with (k ,t')(kxt),

and x x

F (kx ) F+ (-k x).

To complete the factorization analysis, it is necessary to determine

the asymptotic behavior of G+(kx ) as Ikx I- -. We consider first H(kx ) as

I k along a ray, then

Skx 1 Zn F k ZnF
li Hk) . d - F dt

x 2 f 7.2 vt i 2  Trt~
t-O Cos 2 ) + ]2)2 k2sin.0 s '2

- Tti+ ksnt-O X

M

" 2k (5.3.11)
x

since ln(F) 0 as t - 0. Therefore

F+(k ) F(k x ).exp(H(k x )) 11 (5.3.12)

and so

G+(kx) ~Ikx 1 as Ik lI- • (5.3.13)
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A similar result applies for G (k x).

5.4 Decomposition

Having performed the factorization of the function G(k ) in (5.3.10),

we proceed to the decomposition of the function A+/G-. As in the inter-

face problem, this step can be carried out by inspection. The resulting

functions are

S (k T C G ( k k +k(co sk) -cose) (5.4.1)

x G_ 1I (kkcoO *k 1kik~ 8 (5.4.1)

and

+ k c(5.4.2)
S+(k G_(-k cos6)(kx+klCOOT

xl

where 4 f jF9 'E0, defined in (5.2.7) and (5.2.11). The formal steps to

complete the Wiener-Hopf analysis are similar to those given in section

3.5. Therefore the Fourier transform of the current on the PEC screen

is
i z (kokx) - 1 +(kx) - ,nfic-jcse1i

J (k( ) ( ki- (D o

(5.4.3)

To establish the radiation integral for this problem, it is neces-

sary to reconsider the initial formulation. The procedure was to parti-

tion the fields of the problem into two components: the fields due to

diffraction of the incident plane wave from the slab inhomogeneity with

no PEC screen present and the fields radiated by the induced electric

currents on the screen. Therefore

!, i
, ~ ~ ~.
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etotal - eNP + eRad (5.4.4)
z z z

where eN is the field structure due to the incident wave with no PEC

Rad
screen present and ez  is the radiated field structure of the currents

on the PEC.

The expression for ez  is given in (5.2.8) and will not be consider-

Rad
ed further. The expression for ed is given in (5.2.1) with the kernel

given in (5.2.4) and (5.2.6) but with y 0. In the sections which fol-

low the asymptotic evaluation of the radiation integral is considered for

the two half-spaces involving medium I.

The asymptotic expansion of the field in the slab itself will consist

of modal waves propagating in the positive and negative x directions.

While these fields are certainly of interest, they are left for future

work.

5.5 Asymptotic Evaluation of the Radiation Integral for the Reflection

Region (y > 0)

The Fourier transform of the radiation integral for the reflection

region is written as

E d(kx,Y) - F eRad (x)g (x ,XY')dx;}
z x y)

M Iz(k').[,W Grefl(k',y')] (5.5.1)
z x

-Wur -jaI yF (I')
k G(k')e 1  where G(k') -

+21
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When converted to normalized coordinates, we have

-ja Y
ERad (kxy) ( - +(k ).G(kx)e where y k0Y'. (5.5.2)

z /X2-7 k 0 x0g k0

Now the radiation integral itself is the inverse Fourier transform of

(5.5.1),

Rad IRd' 1 f0Rad -jk'x
e (x',y') F- {E E -e x dk' (5.5.3)

Z 'C

Again reverting to normalized coordinates,

ez (x,y) f (k )"G(k )e X dk
z 2r f+ 'C x

1G(k )e k )d-i_______(1 ) e d(~Y k .
G - _(-k COSey (k x+k cose)G "+ (k ) x

(5.5.4)

Substituting for * from the definition following (5.4.2), we arrive at

I" 0(k) -j( ly kx)

e Rad(x'Y) _(kx e 1 kx x dkx, (5.5.5)I: (k x+k 1cose) e

where
-j E0k1sine G+ (-k1Cose)
= 27t

and (G+, C) are the factorizations discussed in section 5.3.

The integral in (5.5.5) can now be transformed into one in the

angular spectral domain using the substitution, k ki sin(a), to give

x
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e Rad (P4 cos(c)'G (k1 sina) -jk1psin(a- ) (5.5.6)
z (sina +cose) e

F

where is the angle of observation (0 < < 7). The saddle point for

(5.5.6) is given by as - (7/2)-O and the equation for the SDP is given

by (A.5.2) with replaced by -0 and k.MO; that is,

cos(u-u s) cosh(v) - 1 (5.5.7)

where us is the saddle point location and a = u+jv. The integrand of

(5.5.6) contains no branch cuts since the mapping removes the branch

cuts and 82 has none. Therefore the singularities are as follows:

1. Geometrical Optics Pole - Root of (sina + cose). It is

clear that this pole lies on the real a axis between -(7T/2)

and +(ir/2).

2. Poles of G - Lie on the line u = -(Tr/2), v < 0 between

a = -(7T/2) and the mapping of -k2.

Forming the asymptotic form of the steepest descent integral for

(5.5.6) through the saddle point proceeds as in the foregoing analysis

and is given byf

FkI sinsino G (klcose) G_(klcos) ejk

Rad -1 ) Eoej/4 e _
)SDP-j (cose + cosW)

(5.5.8)

Similarly the analysis leading to the residue contribution of the geome-

trical optics pole is straightforward and results in

(e Rad M _" -J27G_(-kcos)e 1 (5.5.9)
z .0.

.'*..
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Observe that the geometrical optics contribution suffers no decay as p

increases and will therefore dominate the saddle point contribution if it

is present. As in the classical Sommerfeld half-plane diffraction prob-

lem, the diffraction term is only important in the shadow region of the

problem.

To formulate the residue contribution for the poles of G_(k sina),

it is necessary to determine

Lim {(cLt-.p) G_(k 1sin)} - UCa ). (5.5.10)

p

To evaluate (5.5.10), G is reconstructed as G/G and it is recognized- +

that G+ is analytic and well-behaved at cp

G (klsint)

H(c )- Lim (a- G (k )sin)

P Ca P P +1 nc

G+(k-sina) Lim t(a-ap G(k1 sinna)} (5.5.11)

Using (5.2.7.b) for G-F/61, we have

2(Q 1 (a ) + a2(a p )-cot 2 (a p )t
(p) G + (k ISinap

a-a
x Lim P •

a jB2CL) + 6(CL)] + 2* - $ (a) -cot( ( .t)

(5.5.12)
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Applying L'Hospital's rule to (5.5.12) and recognizing that the denomi-

nator in the braces in (5.5.12) is zero for a , we arrive at

a- _1 -j2 p (2+jS t)sina P
[ Lim - -,( . .3

a-*a , sin 2 (a2pt)

where alp B 1(p ) and 
52p= B2 (ap). Using (5.5.12) and (5.5.13), the

residue contribution for the surface wave poles is

cos(tp) H(O p) -jk Psin(a p+)
(ezRad)G - j2i [sin(t )+Cosa] e

I -j k 1 ~sin (a €)

sin2 ( 2 t)f _j +B2 Cot(B t)] e P

aklp (2+j a t) G+(kisinap)•tan(a )"(sin(a )+cose)P

(5.5.14)

Note that (5.5.14) exhibits the exponential decay factor,

-k psin c sinh IV I

where a = -(1T/2)+jv . Therefore at large P the surface wave contrib-
p p

utions are dominated by both of the other two components. This is not

surprising since large p implies an observation point far from the slab

while the surface waves are confined to the region near the slab's

I surface.

Since the geometrical optics pole is present in every problem and

lies on the real a axis between -(7T/2) and (Ir/2), it is necessary to for-

mulate a uniform asymptotic expansion for the SDP contribution to the rad-

iated field when the saddle point is near the geometrical optics pole.

This result is given below:

II .I7 lb(
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-jk1P(e I~d) - q e
z SDP

unif

x sgn(e+--r)G_(-kl cose)e

x Q vL'~k cos e-14 ei7r/4j

4 2 sin- G- (k 1 )cos) G-(-k1 Cosa)-
+ e/ - -+C(5.5.15)

where Q(y) is given in (4.1.17.a).

Before moving on to the fields for the transmitted region (y < -

the following observation can be made. Recall from (5.4.4) the parti-

tioning of the fields in the problem. For y > 0 the fields, which arise

from the diffraction of the incident plane wave off of the slab with the

PEC screen removed, can be written as

eNP. inc +erefl..i jk16 (xCoa + y sine) (..6aez e e E (5.5.16.a)

+ E0 (F-1)e jk 
(xcose - ysine)

where F, F(k cose) with F defined in (5.2.7) or can be written as

A M
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NP jk1 pcosecosp

e = E0 e [j2sin(k sin esin)]
z

iklrcos (6+P) .(5.5.16 .b)

+ E0k1 sine-G(k1cos) 
e

Observe that the second term of (5.5.16.b) is canceled by the geomet-

rical optics contribution (5.5.9) in the shadow region for observation

angles such that the geometrical optics pole is crossed, > (7-e).

See Figure 5.5. The term in (5.5.16.b) which is canceled is the reflec-

tion which would be seen from a PEG screen covering the entire upper in-

terface of the slab. Since the actual screen is only a half-plane, this

geometrical optics field is forced to zero in the shadow region, but the

correction term (compensating between the slab and a PEG sheet) repres-

ented by F remains.

5.6 Asymptotic Evaluation of the Radiation Integral for the Transmission

Region (y < -t)

To begin the asymptotic evaluation of the radiation integral, it is

necessary to form the Fourier transform of the Green's function for the

transmission region. This is done using (5.2.4) and (5.2.6) to arrive

at

Gtran (kxly) - 1 ei62 e jsY

570y 2 )--2 20  e 1_)a2t - (6 1 +6 2 )Ze J62t  (5.6.1)

where normalized coordinates are used and no- -0/E . Now the radiated

field is given by the inverse Fourier transform (in normalized coordinates)
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x

Figure 5.5. Geometrical optics field structure in
the reflection regiob.

t
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Rad -1 ) ' [ V -T tran
e zk(xy) = F +(kx) (k )

=i " f Pk Gtran (ke _j kx x

u- jL ,y e kx

cc G_(kx) 2 e

-- 2 t  jB2t
(kx+k1 cose)[(O1 - 2)e - +62)e

x e (1ykx) dk (5.6.2)
x

where is given in (5.5.5).

Before proceeding we note the singularities of the integrand of

(5.6.2). As in the radiation integral for the reflection region, this

integral has a geometrical optics pole at the root of (kx +kicose ). For

values of kx with T = Im(k x) < 0 (or if T - 0, then C = Re(k x ) > 0),

G_(k ) is analytic and non-zero. Therefore the roots of the bracketed ex-*1 pression in the denominator of (5.6.2) with a > 0 (which lie on the posi-

tive real kx axis between k1 and k2 ) are poles of the integrand. While

the symmetric roots with a < 0 are canceled by the corresponding roots of

G_. However for C < 0, G_(k x ) has poles of its own. Therefore exclusive

of the geometrical optics pole, the integrand has poles at the poles of

G (k ) which lie between -k2 and -kI and poles at the roots of the- x

I+

*1 + . • • i i .. "-5 -1 ++
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denominator factor which lie between k and k2. These poles correspond

to the surface waves for the slab problem.

It is interesting to note that for a < 0 the pole locations corre-

spond to the surface waves for a slab of thickness t and must propagate

in the negative x direction. Clearly the field, which is launched by

the presence of the PEC screen, that propagates in the negative x direc-

tion from the edge of the PEC screen, must be a surface wave for the

slab. On the other hand the waves moving in the positive x direction

must characterize the surface waves for a slab of thickness (2t) due to

the imaging of the slab through the PEC screen. In fact, the pole reso-

nances for a > 0, which characterize the waves propagating in positive x

direction, show just this behavior since they are roots of G and hence

roots of the numerator of G. These details are discussed in Appendix D.

To conveniently evaluate the poles of (5.6.2) exclusive of the

geometrical optics pole, two alternative forms can be used.

Rad(x,y) -2 dk (5.6.3.a)
z (kx+lk cose) B k

with

G(k )
- x( 5 6 3 b_ x2 , >0

[(B1- 62 )e - (1+6 2)e ]

B(kx  (5.6.3.b)

x2

2 a <O0

G+(k x)(01( 2_2 e -J f2 t 1 62) eJa2 
t ' <

G-(k 2e 2 2 2

+ i(i 2



143

Moving to the spectral domain using the mapping, k k sin a , thex I

radiation integral becomes

jklt cosa

Rad (sina + cose) B(k1sina)

x e dc (5.6.4)

where is the observation angle with respect to the PEC half-plane

(-7 < < 0). The integration in the O plane is shown in Figure 5.6

(where the integration path is offset for clarity).

The asymptotic form of the saddle point integration is

(-J k ts inO+jI)
2 2 (k1cos)sin'e.

(ezRad P 2SD kP 1 (cos + cose) B(k1cos] ejklz

(5.6.5)

The residue contribution for the geometrical optics pole is

(eRa d )  M J(47)[ 2 (-kcose)B(-kCOSe)e 
1

z g.O.
pole

x e .e-) (5.6.6)

The geometrical optics pole is captured in the deformation of the inte-

gration path for > (O-r).

Finally the residue contribution for the surface wave poles must be

given. Clearly the integration path must indent to the right of the

poles when Re(ap ) < 0 and to the left of the poles when Re(a ) > 0. When

the residue is formed, the result is

. -7-



144

(+ K?)

SURFACE
WAVE
POLES

SURFACEJ
POLES1  GEOMETRICAL

POEI OPTICS POLE
(-K2)

Figure 5.6. Integration path for the radiation integral.
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(a )Cosa ejk 1tcos(a ) j oi~

(Rad 2P p p -jkTrrsin p P )
z pole [sin(a ) cose] ef

x Lim [(a-a )-B(k sina)] (5.6.7)

p-

where

SIGN E 1 for Re(ct)

The limit in (5.6.7) must now be evaluated. Consider the case when

Re(a P)--(IT/2), then

2 a--a

(5.6.8)

Applying L'Hospital's rule to the limit expression and simplifying,

(ea) -FJ4ir 8 Co t a e J(alp- 62p )t ;ikiPsin(a~]
z pol i k(sin a + Cos)

X Le+~~)~P~P2+kSf ap)] (5.6.9)

for Re~a ) - -(T/2), where B $1. l(a p) and 6 2p $2 2(a p ) A similar anal-

ysis to that used in (5.6.8) and (5.6.9) but using the other expansion for

B~k I sin~a)), given following (5.6.3), results in
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j4TB 2 o t cc e j(Blp- 62p )t -jk psin(a )

(Rad 2- p p-
(ez )pole k1(sin a + cose) J

LC(k s in aP)
2( lTrT +6 P ,j i (5.6.10)

for Re(a) - +(T/2).

As in the asymptotic analysis for the reflection region, it is

necessary to give the uniform asymptotic expansion for the saddle point

contribution since the geometric optics pole will approach the saddle

point as 0 approaches (-7T+e). The result is as follows:
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(eRad 
j1P

z SDP? 2
unif.

x~s~~e~c~7T~2 Jk ektsineB(kcoee2k PCOS 2 e

XQ(v kTIcos(L2JI

-jk tsinO
+I~ejt/4 ~~ 2 .inO.B(k COS4,) e 1

cosO +f case

+ 2g B(kcs)e*(5.6.11)

where Q~y) is given in (4.2.17a),$2  (a2 arnd 2 -

Finally for convenience, the portion of the total field in the

transmitted region due to the incident plane wave with the PEC screen
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removed is

e NP(P,) -4 0 B1 B ate jkpo~- (5.6.12)
Z -i6 t j

(0~1-a2)
2e, 2 1 2 e 3

where k ksin(e), k ksin(82) vk -k2 COS2(9 )

2I



CHAPTER VI

CONCLUSIONS

The objective of this study is the solution for the scattering of an

electromagnetic plane wave from a PEC half-plane in the presence of pla-

nar media discontinuities. Two specific geometries are addressed. The

interface problem represents a basic canonical configuration in this

class of problems while the slab problem is one of practical interest.

The case of TM incident polarization was chosen as manifesting all the

primary characteristics of interest. It is the author's belief that the

TE polarization will not manifest any new phenomena. In particular,

the functions to be factorized in the interface problem are very similar

to that of the case considered in Chapter III. Based on this it is as-

serted that the analysis presented here can be generalized to the other

f polarization.

iIn the interface problem the analysis leading to the radiation inte-

1gral for the TM polarized wave is given along with an efficient form of

the integral factorization. The asymptotic formulation of the various

far field contributors is given. Numerical data is presented at the end

of Chapter IV to demonstrate the behavior of the various field contribu-

tors as parameters are changed. It is seen that a diffracted cylindri-

cal wave is launched from the edge of the half-plane which is similar to

the wave described by the Keller diffraction coefficient as the media

149
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contrast is eliminated. An interesting feature of the diffracted wave

for the interface problem is the decrease in the radiation field as the

observation angle approaches the interface. This condition is seen to be

necessary for the total solution to provide a continuous tangential elec-

tric field across the interface.

The typical geometrical optics field for the interface problem is

seen to reflect and refract according to the theory of geometrical optics.

A peculiar feature of the interface problem is the launching of a lateral

wave which is seen to have its peak amplitude in the more dense medium

(which is defined as the medium having the greater real part of its wave-

number). Finally, the theory indicates the possibility of a pole term

which appears to be similar to the Zenneck pole. An example of this pole

has not been found which contributes significantly to the asymptotic

field.

The analysis of the slab problem is presented in Chapter V. In this

case no lateral wave is present but surface waves are launched instead.

The asymptotic analysis has been performed for the media surrounding the

slab but is not presented for the slab itself as a self-consistent ex-

pansion has not yet been found. No data is presented for this case.

While this investigation has laid the foundations for study of the

interface and slab geometries, it has by no means exhausted even the

theoretical topics of interest. In the interface problem the issue re-

mains concerning the possibility of a Zenneck-like pole contribution.

While this pole occurs in the TM case only if the media have dissimiliar

permeabilities, it may occur in the TE case for media which have
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differing permittivities and is therefore of importance in the TE case.

Another area of future work would be the development of the uniform

asymptotic expansion of the saddle point integral in the presence of a

branch point. The data given in Chapter IV seems to imply that the local

disturbance in the diffracted cylindrical wave due to the lateral wave

is representative of the field structure at small observation radii even

though the formal mathematics of asymptotic theory breaks down. It

would be useful to confirm this conjecture. Clearly, another avenue of

possible work would be to perform the analysis for the TE case. In the

slab problem numerical implementation remains to be performed. The a-

symptotic expansion of the field structure in the slab also must be per-

formed and the work completed indicates that an explicit modal field

will result.

The form of the solutions is structured to generate the ray-type

diffraction coefficients needed for GTD analysis. While the diffracted

cylindrical wave and the geometrical optics field behave as simple homo-

geneous waves, the lateral wave and Zenneck-type pole wave are inhomogen-

eous plane waves and will require an extension of the GTD to include

scattering of complex rays in order to be utilized. It is hoped that

this work provides a clear demonstration that the numerical evaluation

of the formal Wiener-Hopf factorization integrals is a feasible process

for generating ray-optic solutions to complex scattering geometries.

The application of the GTD to model lap junctions between metallic and

composite dielectric sheets is a relatively straightforward result of

this work.

i



APPENDIX A

CHARACTERISTIC EQUATIONS OF THE

MAPPING k - k sin a
x

A.1 Introduction

The purpose of this appendix is to establish the principal results

which determine the mapping of significant curves in the complex k planex

onto the a plane. In the mapping we take k = k r-jk i as the complex wave

number of the medium of observation and define a = u + jv. The mapping

is written as follows:

a + jT = (kr-jk )sin(u+jv) - (kr-jki)(sinucoshv + j cosusinhv)

k sin u cosh v + k cos u sinh v ; T - k cos u sinh v - k sin u cosh v

Note that (A.1.1) maps the entire k plane into a finite-width strip inxJ
the a plane and that the a plane is periodic in its real part with peri-

od 27r. These results are based on the assumption that both media are

lossy in the problem treated.

It is also of interest to provide an inverse mapping from the top

sheet of the kx plane onto the a plane. This is given by

153
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OL - ZnFU +~ (A. 1.2)

sheet

where In is the principal value of the logarithm, i.e. if Arg(ln) = e

then -Tr < e < 7T and = V' as defined in Section 2.2.x

A.2 Real and Imaginary kx Axes

By setting the real and imaginary parts of (A.1.1) to zero, we

arrive at mappings of the axes in the k plane onto the a plane. The

real axis is mapped into the contour defined by

tanh(v) = (ki/k )tan(u). (A.2.1)

From this formula it is clear that the mapping of the real k axis (about

x

0) lies in the regions of the a plane characterized by (u,v) > 0 and

(u,v) < 0 for any media to be considered. Also the origin in the kx

plane corresponds to the origin in the cc plane.

The imaginary k axis maps intox

tanh(v) - -(kr/ki) tan(u) (A.2.2)

Therefore the imaginary kx axis maps into the two regions in the 0. plane

which do not contain the real axis mapping.

A.3 Hyperbolic Branch Cuts for k

The branch cuts for ±k in the kx plane can be shown to "open up" so

that no branch cuts for are required in the a plane. The multiplicity

of function values for 3 as k migrates between the two sheets of the k-x x
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plane is manifested in the periodicity in Re(O.) under the mapping.

However the mappings of the branch cuts on the (X plane delimit the boun-

daries of the top sheet of the function / .x

The branch of 3 = /7W is given by Im(S) < 0. Therefore the
x

branch cut lies on Im(6) - 0.

Im(a) - Im(Yk 2(l - sin2 ()) ) (A.3.1)

- -k sin(u)sinh(v) - k cos(u)cosh(v) 0ri

Hence

-(k./k ) tan(u)tanh(v) (A.3.2)
i r

After some simple manipulation we find that the curves in the OY plane

which correspond to the branch cuts from ± k in the k plane are given byx

tanh(v) - (ki/k r ) tan(u ± 7/2). (A.3.3)

These lines correspond to the mapping of the real kx axis onto the 0L

plane but offset by ±(7/2) along the u axis. This region corresponds toI the top sheet of the functions involving S. Therefore these lines toge-

ther with the mappings of the real and imaginary k axes divide the topx

sheet region of the 0. plane into the mappings of the four quadrants in

the kx plane.

A.4 Hyperbolic Branch Cut for (-k op)

The integrands in the field integrals arising in the interface

problem will involve the factorization function G_(k x ) which contains
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functions with the original hyperbolic branch cut for Sop extending from

kx M -kop. (We have chosen to use k as the wave number of the observa-

tion medium, therefore kop is the wave number for the opposing medium).

Hence it is necessary to determine the position of the mapping of this

branch cut.

As in the case of the branch cuts for B, the Bop branch cuts lie

along the curve Im(op) = Im(/kop- k ) = 0. So Bop must be positive and

real for points on the cut. Therefore

Im(p)= Im(kgp- k sin2 (c)) = 0

yields the defining equation for the locus of points on the Sop branch

cut,

(k )(k i) + (k -k 2)(sin ucosu sinh v cosh v) =

opqr op'i r i

(krki)(sin 2u cosh 2v - cosu sinh 2v) (A.4.1)

where kop = kop,r-jkop,i and k - kr-jki.

4 After algebraic ma..Lpulations, we arrive at

a2 - 2ab sin(2u)sinh(2v) + b2sin2 (2u)sinh2 (2v) - cos 2 (2u)cosh2 (2v)

[bzsin2 (2u) - cos 2 (2u)]sinh(2v) - [2ab sin(2u)lsinh(2v) + [a2- cos2(2u)] - 0

(A.4.2)

where a I - 2 (kop,r'kop,i)/(kr'ki),

and b - (k- kj)/(2kr'ki).

Applying the quadratic formula and simplifying:

I
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sinh(2v) cos2  [ab sin(2u)[(bsin(2u)) 2 -os ( 2 u ) ]

(A. 4.3)

ticos(2u) I v(a 2 -1) + (b2+1)sin2(2u)_

where the correct sign for the square root must be chosen. The analysis

for choosing the appropriate sign of (A.4.3) is straightforward and the

results are given below.

For lai > I,

sinh(2v) x
[(bsin(2u))2 - cos 2 (2u)]

[b sin(2u) - sgn( + u) 'sgn( + u)

x tCos(2u) (a2-) + (b2+1)sinZ(2u)] (A.4.4)

for (- Tr+ tan- I(k/k r)) < u < u (kx=_kop rd v < 0.

where sgn is the signum function.

For Jaj < 1,

Cos(U =a -b sin(2u)sinh(2v) (A.4.5.a)
cosh (2v)

for v > v (k-k and -(/2) < u < 0,

wheeop

where



158

sin (2u) = 1
[cosh 2(2v) + b2sinh 2 (2v)]

Lab sinh(2v) - cosh(2v) /-(az+b2) + (b2+1)cosh2(2v)

(A.4.5.b)

For lal I there are two cases: a = ±1. If a = -1, then

(kop,r kop) - (kr ki ) and the branch cut for op will coincide with at

least a portion of the locus of points on the 6 cut in the O plane from

- -(r/2). In fact, either (A.4.4) or (A.4.5.a) may be used recogniz-

ing that (A.4.4) gives the portion of the aop branch cut for v < 0 and

(A.4.5.a) will give the portion for v going to + -. On the other hand

if a = 1, then kop'i M 0 and the aop cut must run along the projection

of the positive imaginary kx axis, hence we must use (A.4.5.a).

A.5 Steepest Descent Path

The characteristic curves discussed in previous sections of this

appendix are fixed for a given problem once the media are specified. As

stated in Section 4.1.2, the saddle point for the field integral is found

as a root of the derivative of the exponent in the integrand and is found

to be given as L, 4+7T/2. At the saddle point the exponent is; S

-jkP sin(cts-0) = -jkP sin(2) - -jkP. (A.5.1)

Now the steepest descent path is determined such that the imaginary part

of the exponential for all points on the path is equal to the saddle

I..
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point value, i.e.

Im(-jk sin(ct-O)) -(kr sin(u-O)cosh(v)+k cos(u4)sinh(v)) =-k r

or equivalently

1 - sin(u-P)cosh(v) = (k./k )cos(u-)sinh(v). (A.5.2)
3. r

This expression may be reduced to an explicit formula for the steepest

descent path.

By manipulating (A.5.2) and using the quadratic formula, one arrives

at

tanh(v) - (-B± -iB 2-AD)/A , for v < 0, (A.5.3)

where A I + (k icos(u-4)/k )2,

i r

B - y sin(2(u-0))/2p

D - - cos (u- )

Y- kI/kr ,

We observe here that as v + 0, the asymptotic form for the original

expression is:

- tan(u-) % (k /k r)tanh(v) % (ki /k). (A.5.4)

Using the trigonometric identity tan(u-u +7r/2) --l/tan(u-u ) where u

is the position of the saddle point (u 0 p+ -r/2), we arrive at theS

following:

tan(u-u ) i/(k /k ) u-u - /2-tan- l(k /k ). (A.5.5)s i r s i r
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So as v - +* we see that u - u s+(T/2-tan- (ki/k )). Similarly as v -) -c%
-1

u u s-(Tr/2-tan (k /kr)). Using these values it can be seen that when

the saddle point lies at u - -+IT/2, the asymptotes of the steepest descent

path are the same as the asymptotes of the respective boundaries of the

top sheet (mappings of the hyperbolic branch cuts from the points

k W -k).
x

One final point of interest, which is important in the evaluation

of the steepest descent integral through the saddle point, is the value

of the slope of the path at the saddle point. If we consider points in

the vicinity of the saddle point ( a - u + pe ), then the exponent of~S

the integrand of the field integral will be given by

(A.5.6)

g " -jk sin(a-p) -jk +(jk/2!)(L-t )2+...

-J(k r-Jki)+(j/2)(kr-Jk i )(cos(26)+j sin(2e))+...

(-k +(P 2/2)(k i cos(
2 e)-kr sin(2e)))

+j(-k r+(P 2 /2)(kr cos(2e)+kisin(2e)))

Nov since (Im(g))saddle = -kr , then we must require

point

(k r cos(26)+k i sin(26)) - 0. (A.5.7)

Hence:

(tan(2e))saddle -(k r/k ) (A.5.8)

point

which is the slope of the steepest descent path at the saddle point.
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A.6 Path of Integration

The field integral involves an integration path which lies in the

Wiener-Hopf strip. The path will lie in a region bounded by the singu-

larity at kx M -k1 cos(8) which represents the incoming wave in the upper

half space. Therefore we can take this path to lie along the real kx

axis for 0 < e <7r/2 using the aperture formulation. For 71/2 < e < Tr, we

can take the path to lie on a line with the imaginary value of k given
x

by T - Im(-k 1 cos(e)) and indented counterclockwise below the pole. For

this case we can use the expression

Im(-k I cos 6) - k cose = Im(k sin cx)

- k cos u sinh v - k. sin u cosh v. (A.6.1)
r 1

However this is not convenient. The main significance of this curve is

the following observation. If we consider the integration path to be the

real axis in the a plane for the sake of simplicity, then as the geometri-

cal optics pole moves to the right of the real k mapping (e > Tr/2), it

will only be crossed in the deformation of the original integration path

when the steepest descent path is to the left of the geometrical optics

pole. This point is made visually in Figure A.l. Put another way, the

only possible singularity of the integrand which can lie between the true

integration path and the real k axis mapping is the geometrical opticsx

pole.

A.7 Locus of the Geometrical Optics Pole

A singularity whose residue contributes to the far field and is of
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to coincide with the real k axis mappingx

Figure A.I. Deformation of the integration path
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particular interest is the root of (k sin a+ k1cose), where k is the wave

number of the observation medium, kI is the wave number of the upper

medium and e is the angle of the incident plane wave (0 < 0 <Tr). This

contribution constitutes the so-called geometrical optics field. Clearly,

if k kI (that is, the observation point is in the upper medium), then

CL r e - iT/2 and the locus of the geometrical optics pole (GOP) in the

a plane is the real a axis between u - -(r/2) and u = +(Tr/2). If k k 2

(lower medium wave number), then the locus of the GOP leaves the real a

axis, crossing it at a = 0.

To compute the locus of the GOP for k -k2, we expand the root a

in the a plane

k 2sin(a -k1COS(. (A.7.1)

Substitute k, - klr-jkii, k2 - k2r-jk 2i and L = u+jv and after some alge-

braic manipulations arrive at

tklrk2r + k lik2i tanh(v) for k k # k (A.2)

ki ta1u - klrk i k ~2  lr 21 1i2r'(.72

Note that if klr* k2i ' kiik 2r, then k lies on the line in the kx plane

which runs through both k2 and the origin. In this case the GOP locus

will run between - a(k ) and + a (k) along the line segments shown in

Figure A.2.

Clearly for a specific value 0 we can use the standard mapping for-

mula (A.1.2) to find the location of the GOP and it will lie on the curve
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Figure A.2. Locus of the geometrical optics pole
when k l'k 21 k l*k2r
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specified by (A.7.2). We note in passing that it is possible for (A.7.2)

to specify a curve which moves from a(-k1) onto the lower sheet of the a

plane and running to c = - YT rather than to a - 0 as one might expect.

This corresponds to the situation in the k plane where the locus of thex

GOP (a straight line from -k to +k ) crosses the 82 branch cut. In ef-

fect, a pole moving from kx = 1 to kx = 0 is seen to move onto the lower

sheet projection and simultaneously, the root from the lower sheet is seen

to emerge onto the upper sheet projection.

It is useful to establish the slope and curvature characteristics

of the GOP locus in the a plane (only the projection of the second quad-

rant of the kx plane is of interest). Before proceeding it is necessary

to consider a classification scheme for the second quadrant of the kK

plane (and its image in the a plane) which is based on the properties of

the mapping k M k2sina. The following equivalences hold in all cases;x

kx plane a plane

1. The straight line segment 1. The segment of the real

between kx 
= 0 and kx = -k2. axis between u = 0 and

u -(Tr/2).

2. The extension of the above 2. The line segment for

line segment from kx  -k2  u * -(T/2) and v < 0.

to .

I _ _ _ _, .. ..
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3. The straight line segment 3. The SDP through

for (kx ) = -k2r and . - -(T/2).

(kx )i > k2i"

4. The extension of the line 4. The SAP through x = -(ir/2)

segment in 3 for (kx)i < k2. (only the portion on the top

sheet is of interest).

5. The extension of the 5. The locus for v < 0

branch cut hyperbola represented by the

from k M -k (asymptotic mapping of the
x 2

to the negative real imaginary k axisx

k axis). moved to intersect u = -(/2).
x

These images are shown in Figure A.3. As mentioned these particular

loci will always map as indicated. Now we classify the second quadrant

of the k plane and its image in the a. plane as shown in Figure A.4.x

For the purposes of this discussion we will treat regions 2A and 2B as a

combined domain, region 2.

First we form the derivative (dv/du) of the GOP locus equation

(A.7.2) as

rdv] cosh 2(V) (A.7.3)
U GOP K (A.7.3)

locus K cos 2 (u)

where klrk2r + klik21

lr 2 r)IK _ -_
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Figure A.3. Prominent lines in the k plane and

their projections in the a plane.

a. Lines in the kx plane.

b. Curves in the a plane.
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Figure A.4. Regions in the k xplane and their projections in
the a plane.X

a. Regions in the k xplane.

b. Regions in the a' plane.
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Clearly < > 0 if the line in the kx plane from -klr to the origin lies

above the GOP locus (that is, (-kI  in region 2); otherwise < < 0.

Forming the second derivative,

d2v )  2(l+K2 )csh'(v) sin(u)cos(u) (A.7.4)
R.u2 )GOP <2 cos4(u) K

locus

For a in region 1, < < 0 and -(7T/2) < u < 0 so (d2v/du 2 ) > 0. For b

in region 2, K > 0 so (d2v/du 2) < 0. For a b in region 3 we see from

Figure A.4.a that the GOP line will cross the boundary between regions I

and 3. Now since ctb is in region 3, < < 0; but for the region I portion

of the GOP Locus, -(Tt/2) < u < 0 while for the region 3 portion of the

GOP locus, -I < u < -(1T/2). These results are collected in table A.1

for the GOP locus in the ot plane and shown in Figure A.5.

For a in dv d2v
b du du2

Region I <0 > 0

Region 2 > 0 < 0

Region 3 (cERegl) <0 >0

Region 3 (QERegi) <0 < 0

Table A. 1. Curvature characteristics
of the Locus of the Geometrical Optics
Pole.

jI
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A.8 Locus of the Connection from -k1 to -k2

In Section 3.4, which deals with the factorization of the function

G2, we saw that the branch cuts for $1 and 32 can be deformed along the

connection lines between the branch points and will cancel on the semi-

infinite portion of the cuts resulting in finite cuts between the branch

points. (See Figure 3.3). It is also demonstrated in Section 3.4 that

the function G 2 (and hence G) will not have roots on the top sheet using

these finite branch cuts. It is important to the discussion in Appendix

C, which examines the exposure of these roots in the process of deforming

the 8i branch cut, that the locus of the connection between -k1 and -k2

in the a plane be established.

In this section the formula for the connection locus from -k1 to -k 2

in the 4 plane is given for observation angles in the lower medium, k2.

A similar analysis can be performed when the observation angle lies in

k I. We start with the parametric description of the connection in the kx

plane:

kx2 k 2 + (k -k2)t, for t E [0,1]. (A.8.1)

Substituting kx k2 sin(O) into (A.8.1), the expression can be reduced

to the equality of the real and imaginary parts.

1 + cos(2u)cosh(2v) = -(0-2)t (A.8.2)

-sin(2u)sinh(2v) = -'t (A.8.3)

where a - u+jv and P, Q are given by
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(k-k*) = (k k + k k ) -1ir2 i.2i+ j (k k2  k~ kQ A+jB (A.8.4)

-(~ 2) 2(A2-B2 + j +~i j (A.8.5)

k214 jk21 Lk 2 1

After manipulations the quadratic formula can be applied to arrive at

sinh(2v) - 2 12 [S ±C yVTE(2_ I (A.8.6)

where c = cos(2u) and s - 0-2- sin(2u).

It is necessary to establish which sign is appropriate and in the proc-

ess the behavior of (A.8.6) must be examined. The result of this analy-

sis for the path between k =-k 1 and -k is

Sgl2(i u~

sinh(2v) = ~-- ± 2S 2 C T-W SY (A.8.7)

for v(- 0

Itand either - < u <u

2 - - (-k I)

IT
or uu<

where

c -cos( 2u)

s - [V]~ sin(2u)

,iF: Defined by (A.8.4) and (A.8.5).
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An exceptional case for (A.8.7) occurs if , = 0, then s- . This will

occur if

k 1rk 21 k ik 2klrk2i =lik2r

(A.8.8)

k i k21

klr k2r

Hence when this case occurs, -k and -k2 lie on the same ray from the

origin in the kx plane. If kir < k2r then we have that v = 0 on the

connection path in the a plane and the locus lies on the real a axis.

If k2r < klr then the connection must lie on the line u = -(Tr/2), v < 0.

We now examine the slope and curvature characteristics of the

connection line in the a plane using the same classification system as

in Section A.7. By forming the derivatives of the locus equation for

the connection line between -kI and -k2 and manipulating the results, it

can be shown that the curvature of the locus is as given in table A.2.

du d 2 u

Fora in d-v

Region 1 >0 >0

Region 2 <0 <0

Region 3 >0 <0

TablP A. 2. Curvature Characteristics of Connection

from -k1 to -k2.

- " - -9i
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These results imply that if "b (kx - -kI ) is in region 1 or 2, then

the entire locus is in that region. It is possible for Ob to be in

region 3 to have the locus cross the SDP boundary and its image appear

in region 1. This case is considered in more detail in Section C.4.

In concluding this section on the connection line between -kI and

-k2 P it is interesting to note that in the kx plane the curve is actu-

ally a portion of a hyperbola which passes through kx = -k1 and -k2 and

has asymptotes which are perpendicular. This is due to the fact that

the connection line lies on a straight line in the k2 plane. This is a
x

property of the mapping k2 and accounts for the fact that the hyperbolasx

used to define the original branch cuts for $1 and 2 will map into

parallel straight lines in the k2 plane.x

n1 0. .



APPENDIX B

ASYMPTOTIC FAR FIELD RESULTS

FOR THE INTERFACE PROBLEM

B.1 Introduction

The purpose of this appendix is to present explicitly the asympto-

tic contributions to the far fields in the interface problem. The solu-

tion in the transmitted region (y < 0) is derived in this appendix. Simi-

lar steps can be followed in the reflected region and the generalized re-

sults are given in Chapter 4. Throughout this appendix we follow the ap-

proach of Felsen and Marcuvitz (1973a).

B.2 Asymptotic Far Field Constituents in the Transmission Region

The integral to be evaluated is shown below:

r & k2 cose jk2 Psin (a-4)

ez(X,y = G (k2sina)(k2sina + klS e dc (B.2.)

for y <0

-JE0 sine

where - constant Tn, (-k cse) , E0 = magnitude of incident field
1MG+ 1- oe

e - angle of propagation of incident
plane wave

- observation angle (-7<<O)

+,G_ - factorizations
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P radial distance from the edge of
the PEC screen, normalized

ils,kl 3k2 - normalized values

r path of integration in the a plane

The singularities, which may be crossed (thereby contributing explicitly

to the asymptotic field), are as follows:

I. Geometrical optics pole due to the root of

(k2 sin a + k cos 6).

2. A pole due to the root of G_ in the mapping of

the second quadrant of the kx plane (or on the adja-

cent lower sheet),

3. Branch point of 1 vi -k in the mapping of

the second quadrant of the k plane. Due tox

G_(k 2 sin a).

Each of these contributors is considered below.

B.3 Steepest Descent Integral

After having deformed the integration path of the radiation inte-

gral (B.2.1) to the steepest descent path through the saddle point,

( s + IT/2, one is in the position to evaluate an asymptotic approxima-

tion to the saddle point integral.

The first two terms of the asymptotic expression for the steepest

descent integral are known to be (Felsen and Marcuvitz (1973a))

" ____- ___________
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2 f (a) 1 f(a) d 2f(as)

(e) saddle k -- j 2 k P3/2 - + da 2point 2 k e

for < 0, e-J k2P
where .3.1)

k2 Cos a1 (B.3.2)

= G_(k 2 sin a) (k2 sin a + k1 cos e)

as 1T/2 + and P is the normalized distance from the edge of the

PEC half-plane (P = 27 distance in wavelengths in free space). As long

as is not in the neighborhood of 0* or -180*, the lead term in the

series will dominate for observation distances greater than a wavelength

in free space from the edge of the PEC half-plane. As the observation

point approaches the interface between the media, however, the (cone)

factor in (B.3.2) causes the lead term in (B.3.1) to vanish and the

second term dominates the expansion. In principle this evaluation can

be performed but this avenue of work has not been pursued since the ex-

pressions are tedious and of little practical value. Instead, the fol-

lowing observations are made concerning the significance of the second

term in the asymptotic expansion.

For observation radii exceeding one wavelength in free space, the

lead term dominates the first part of the second term in (B.3.1). It is

appropriate, therefore, to compare the behavior of the lead term with

the second part of the second term in (B.3.1). For % 180*, the

second derivative of f(a ) behaves as

S1

-- ~
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- 2j ..1.2 sin a2"I" '2 si s (B.3.3)

f"f (S) l.2"Sl (k2sin a ) G_ (k2sin )a (k2 sin a + k Cos 8)

If the modulus of the ratio of the lead term to the second term in

(B.3.1) is evaluated in the vicinity of as = - T/2 (that is, for

= - 1800) using (B.3.3), we see that

first term of (B.3.1) = P _ 2 "31(k2 sin a )s
second term of (B.3.1) tan *sin as

(B.3.4)
As long as the contrast of the two media is substantial, we see that an

estimate of the relative significance of the two terms is given by

R I C (B.3.5)

We observe that if P is taken as one wavelength in free space, then R = 1

for P - 1710 and if P is taken as five wavelengths, then R I for

1780.

In effect, we assert that the "propagation field" (which behaves4as P- ) dominates the saddle point field contribution except in the vici-

nity of the interface plane where a lateral wave type of field exists and

preserves the phase and amplitude propagation behavior of the total field

across the interface aperture. The lead term in (B.3.1) is given by

(4.1.8) when generalized to observation points in either medium.

B.4 Geometrical Optics Pole

This pole occurs at agC such that k2 sina go+ k cose = 0.

gc o

_ _ _ _ _ _ _
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Since the integration path F runs from v - to v = + -(where a - u+jv),

we see that the pole of the integrand at a g will be encircled either
go

positively or negatively when crossed depending on whether the geometrical

optics pole lies to the left or right of the path of integration. All

that remains is to evaluate the residue of the pole,

-j k 2 sin(cL-)

Residue(a (a-a ( k2 cosa e

go F go G_(k 2si=( 2ina +k Cosa)

go

L rj(2 s J2si

(e ) - j2Tr Res(a ) G krE e 2  (B.4.1)
z go go G (-k Cosa)

2E sin-3 -jk 2 sin(a go-()(ez) ° = l__lO@ e go(B.4.2)
zgo n1 0G(-k COS)

B.5 Root of G2 (k2sin a)

It is noted in Section 3.4 that G+(0) G_(-), G(r) -G+(cL).G_( )

and that G+ and G_ each have a single root which must be located at the

same position as the roots of G. It was shown that G does not have

roots on the top sheet of the analytic continuation of G2 which has the

finite branch cuts connecting the branch points. (Here we refer to the

S-..
.1.
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partition G 2 of G given in (3.4.2)). However when the branch cut for

is deformed in the process of evaluating the asymptotic contribution

for the branch cut integral, this root may be brought up to the top sheet

and be crossed as the integration path deforms to the SDP. In that case

this pole contribution must be included and is discussed in this section.

The question of when the root is exposed and crossed is discussed in Ap-

pendix C. The residue at the root of G_ is given as

kcosct e1

R e s i d u e ( a ) - a k 2e - s n 2 s i n + _ l O)

r r G~-2 n)2 s + k 1Cose)j -~
r

k s -jk2 Psin(a r-0)

2 r Lim__rk 2sina r + k cose Lim 2

2- r - ab
ry -Lim V (aa ]

a -* a

y s G+(k2 sinar)
- +2 r(3.5.1)

G' (k2 sina ) (k 2 Csar)

Now we observe
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G - L k + 1 (B.5.2)dk x x1 113 12 2

L

However at c 0Cr, G(ar  - 0 implies

B1 M -(02 1/11 2 at cL=r (B.5.3)

Substituting this into (B.5.2) yields

G'(k sincL) -k +
2 r )x 2 I11

N j k =ksia

2 2 rl

2 tana (B.5.4)

B.6 Branch Cut of 81 for kx  -k I

The last singularity contributor that we need to evaluate is the

branch cut integral due to the presence of G_(k x ) in the integrand of

(B.2.1). As we deform from the integration path F to the SDP, there

will be a critical angle such that the SDP will cross the branchcr

point ctb for all such that 1 1 > Icr in order to deal with the

contribution of the branch point in a systematic manner which will be

amenable to asymptotic evaluation, we choose to follow an approach which

is analogous to conventional steepest descent analysis.
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The essential point in steepest descent analysis is to deform the

integration contour to lie along a path of constant phase in the expo-

nential factor. As a result, we are guaranteed that the magnitude of the

exponential factor will change most rapidly along such a path. Because

this path is chosen to pass through the saddle point of the exponential,

there are, in fact, four possible paths along which we may proceed. Two

of the paths are colinear at the saddle point and are referred to as the

steepest descent path (SDP) while the remaining two colinear paths make

up the steepest ascent path (SAP). However if we choose some other

point in the complex plane and examine the contours of constant phase of

the exponential, we find that there is only one set of colinear paths

from the chosen point (see Figure B.). One direction will follow a

path which is asymptotic to the SDP while the other direction will cause

one to move on a path which is asymptotic to the SAP.

Consider the following procedure. We specify a given observation

angle such that II > LPcri and therefore the integration path must cap-

ture the branch point which characterizes -k I as it deforms to the

SDP. We deform the branch cut for to the steepest descent path through

Cb (SDPb) which is the portion of the constant phase contour that is asymp-

totic to the SDP. Then we deform the integration path to the SDP. In

the process of this deformation we must enclose the entire branch cut

and the integration paths for this branch cut integral will lie along the

steepest descent path from Ib' The specifics of this deformation are con-

sidered in Appendix C. For our purposes here, we assume that such a de-

formation has occurred and the branch cut for 1 lies along the SDP from
1 b

a b "We are now interested in evaluating the branch cut integral and fol-
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kV
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Figure B.1. An example of the steepest descent/ascent
loci for an arbitrary point "b.
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low the analysis discussed in Section 4.8 in Felsen and 
Marcuvitz (1973a).

We want to characterize the portion of the integrand in (B.2.1) exclusive

of the exponential in the vicinity of Ob. Hence,

k2cosa

- G (k 2 s(n)(k 2sina + k1cos6)

- 2" cosaG+ (k 2sin) 1
k2snL+ k1 Cosa G(k 2sini)

u(a)

[k q -J Lcsc + + k2sn
k Cosai Ak sinci

P2 2

(B.6.1)

olnear cb we haveIf (CL I G°
afc) - Lki, k (co8-)2++ -'i~- 1 ) 1
e 1 2 1 ( B.6.2)

where --6 refers to thi analytic continuation of the original branch

of d k 2 sin(% in the vicinity of ab(discussed below). p-PV is the

principal value with the branch cut along the negative real axis.

I . --------- - -
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Before proceeding we need to clarify the meaning of v -. To
do this we begin with A k sin a. The original specification of this

2

function is given in Section 2.2 ( specifically (2.2.2) and Figure 2.3).

We see there that the quantity ( kl+kx) = kx-(-k 1) can be considered

as a vector from (-kI) to kx . If this is done then the following

equations hold for the branch definition:

if (k1+ k ) X Ik1 + k xlej, then (k1+ kx  " 1k+ k 1  e (/2  (B.6.3)

It is shown in Section C.3 that the SDPb branch cut for never crosses

the a plane locus of the straight line from kx M -k1 to kx - 0 in the kx

plane (locus of the geometrical optics pole). Hence the function /k+k

will retain its original value from the hyperbolic branch cut definition

for all points on this line. If we examine points on this line (referred

to as a ) in the a plane near ab, we find that

(-k2)t - (k 1 +k 2sin a ) for t e [0,1]

-k _ l+ B 2 (k).(aS_%)

2 [B(k l)]'(ag-%)-(1-t)kI

We have:

Arg 82 (kI ) + Arg (ag-a) - Arg k1

and

Arg(, ' x) - Arg kl~Arg[ B12 (k ).(ag-b)]

Hence

Ar[2(k) Arg ( 2 (k) + ; Arg (a --b) = Arg k,

2 1 2 1
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So Arg(ag-ab )  eg - Arg kI - Arg B2 (k1 )

and

___________V *ig/2• 1 ea ja 2/B2(k) (2-U) 1 /f2k ) V g-ab

Having specified values on the branch of 7-- near we can analytical-

ly continue them. So,

2 (k 1).-(a-b )  - V62 (kj) . la-bl eje / 2 '  (B.6.6)

where a is near 06 and e assumes a value by rotation from 6 . Consider,

in particular, the ray from abalong the SDPb which results from the coun-

terclockwise rotation from e and call the angle e+. Then

f(a+) - y + m/I T . (B.6.7)

where Y and m are given in (B.6.2) and 7, - . + _ e +/

with e < e+ < eg+2r and 0+ is the angle of the SDPb from ab . Turning to

the analysis of Felsen and Marcuvitz, we see that the branch cut contri-

bution for a branch integral, which has the integration path running coun-

terclockwise around the branch point, is given by

mR exp(j38+/2) ejk 2 hin(ab4) (B.6.8)

lb .k2Pcos(%-$)13/2

Generalizing the result for the reflection half space gives (4.1.16).



APPENDIX C

DEFORMATION OF

THE 81 BRANCH CUT

C.I Introduction

The case to be considered in this appendix is that of the interface

problem where the field integral is to be evaluated in the transmitted

region, i.e. the same case as that in Appendix B (specifically(B.2.1)).

As discussed in Section B.6, it is useful to deform the branch cut of

from kx = -k1 arising in the factor G_(k2sin C) in (B.2.1). In partic-

ular, we deform to the steepest descent path (SDPb) from the point %
where -kI- k2sin 5 . Section C.2 examines the constant phase contours

specifying SDPb for a given saddle point location (as ) and develops the

relevant equations. In Section C.3, we examine the effect of the deform-

ing branch cut integral on the various singularity contributors. Final-

ly, in Section C.4 we consider the exposure of the root of G_(k 2sinL).

C.2 Constant Phase Contours

The steepest descent path (and steepest ascent path) from the saddle

point %t is actually a path in the CL plane along which the phase of the

exponential in (B.2.1) is constant. Therefore

Im[-Jk 2 sin(L-*)] - Im[-Jk 2cos(a-a8 )] . (C.2.1)

187
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where a - u +j v, k2 - k2r-j k2 1; k2r) k2 i > 0.

So the phase is given by

y - k2isin(u-us)sinh(v)-k 2rcos(u-us)cosh(v).

Along the SDP (with respect to 01), y -k It is clear from the

discussion in Section 4.1.3 (and Figure 4.4), that if (s - 0, then the

region between the two shifted mappings of the imaginary kx axis (the

zero phase lines) will have y < 0. It is useful to consider the

contours of constant phase which lie to the right of the SDP ( and hence

characterize points which will be crossed by the SDP for -Tr < < -Tr/2).

See Figure C.1. Observe that for -k2r < y < 0, the contours run more or

less vertically and lie between the SDP/SAP and the right zero phase

line. For Y < -k2r the contours curve downward and lie between the SDP

and SAP. We observe another point: namely it is clear that the portion

of the contour which is asymptotic to the SDP is the SDPb from the point

Hence if Y > -k2r , the SDPb runs up and to vi-+ while if Y < k 2 r

the SDPb curves to the left and down to v - - . Therefore as the

saddle point moves to -7r/2, the SDPb deforms continuously as shown in

Figure C.2. We notice in particular that when ab lies on the SAP, the

SDPb may be taken as running to either v - - or v - + o. We can view

the phase contour plot of Figure C.1 as fixed to as and visualize 'b as

moving to the right on the phase plot as a s moves from 0 to -71/2.

We have seen in the above discussion that the SDPb alters radically

as CL moves to -7r/2. However, note that the SDPb will always lie to the

left of the SDP through CL which passes through ab . This can be seen by

S m

* 4*.
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Figure C.1. Contours of constant phase in the a plane
about the saddle point location.
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observing that if the derivative (dv/du) is formed from (C.2.1), then in

all cases the SDPb will have a tangent from ab which moves into the

region to the left of the SDP through ab and remains in that region.

Also we know that the SDPb is bounded on the left by the SDP through as.

So for any % and as we have a band between the two SDP loci in which a

root of G (k 2sina) may be exposed (and obviously crossed by the SDP

through a ). Viewed the other way if the root of G lies outside this

band then it cannot lie on the top sheet and be crossed by the SDP so it

can be ignored. To use this information it is helpful to know the value

of a (referred to as a sb) such that the SDP runs through ab. To deter-

mine this we set Y - -k and O = a in (C.2.1) and solve for ab. The
2r b b

result is

cos(usb) -A+B [k2r A ±v/Bz(A2+B2- for v > 0 . (C.2.2)

where a- u+jv,

A - Re [ 2 ()] - k 2 cos (u b ) cosh(vb) - k2 sin(ub ) sinh(vb)

B - Re[kx(b)] - k2 rSiln(Ub)COSh(Vb) + k 2icos(ub)sinh(vb)

and- u < 0.
2 sb

Now consider an arbitrary point %b(which must lie in the second

quadrant of the kx plane) and an arbitrary saddle point a (between -ir/2

and 0). We wish to derive an explicit equation for points on the SDPb.

To begin we solve (C.2.1) for a. Then we invert (C.2.1) for to arrive
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at the following expressions:

If Y > -k2r:

sin(u-Us) - -i LB+AVrA/+B-112  for (u-us) >0, all v,(C.2.3)

where

k rCOSh(v)

- u+j v and A- 2r
ly I

k 2sinh(v)
B-

If y <-k2r:

sinh(v) " [B-sgn( _ U+u) vAz(B2AZ+l)]A 2+B 2

for -el< (u-us) <8 , v<0, (C.2.4)

where kwe cos(u)

A 2r (C.2.4.a)

IyI

B - k2 1*sin(u) (C.2.4.b)

a n t (C.2.4.c)
2i

Note that in the limit of Y -k2rI these equations describe points on

the SDP and SAP which define the bounds of their respective regions

(Y Z -kr). However we recognize the following limitations for the appli-

cation of (C.2.3) and (C.2.4) when Y - -k2r:

(C.2.3) gives u as a function of v for: a. SDP for v > 0
b. SAP for v < 0
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(C.2.4) gives v as a function of u for: a. SAP for. u > us
b. SDP for u < us

These results can easily be extended by recognizing that the SDP and SAP

are symmetric with respect to the saddle point %s.

C.3 Effect of Deformation on the Contributing Singularities

As discussed in Section B.6, it is desirable to deform the 1 branch

cut from kxm -kl, which arises from G _(kx ) in the denominator of the

field integral, to lie along the SDP in preparation for the deformation
b

of the path of integration to the SDP through the saddle point. This

permits a formulation of the branch cut contribution which is amenable

to asymptotic analysis. As is recognized in Sections B.5 and B.6, this

deformation of the $1 branch cut has two effects on the integrand

resulting from the fact that the steepest descent analysis is performed

on an analytic continuation of the integrand. First, the question

arises concerning value of 81( that is, + or - the original hyperbolic

definition of 61). Since we only evaluate the integrand at the positions

of the singularities in the complex C plane, the question reduces to

determining if the specific singularity is crossed in the process of

deforming the 1 branch cut. The second issue arising from the deforma-

tion is the determination of whether a root of G- is brought onto the

top sheet of the integrand (and is crossed by the integration path as we

move to the SDP of integration). This question is rather involved and

is considered in Section C.4.

We begin by recalling the field integral to be evaluated

A



194

-*.j C
Ia 1 j(B 2y-kxX)f G G(k x) (k x+k 1Cosa) •d x

--- Jc

T+jc G (kx) j (8 2 Y-kxX)

- C G(k).(kx+kl cos) e dk for y <0 (C.3.1)
-+Jc Gc -kx+ oa

We note that the second form displays explici - the B and a branch
1 2

cuts in the second quadrant of the k plane t :, ,h the function G(k ).x x

The branch cut for a, affects only the portion of the integrand outside

of the exponential, hence deformation of the branch cut does not

affect convergence of (C.3.1). In the second form given in (C.3.1) the

value of G(k x ) is unaffected by the deformation of the branch cut from

k2- -k 1and can be evaluated using the factorization integral without

alteration.

We utilize the classification scheme of the Ot plane given in

Section A.7 and add a level of refinement. We now break region 2 into

f2A and 2B as shown in Figure A.4.

Having stated this classification, we begin by considering the

saddle point contribution. Consider a in region 1. It is clear from

the phase contour plots (Figure C.l) that the SDPb will have v > 0.

However it is also clear from Figure A.4.a that the original hyperbolic

branch cut for in region 1 will lie in region 1 and not cross the

connection from -k1 to the origin. Therefore we have demonstrated that
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if the branch point ab is in region I then the deforming branch cut 1

will not cross the real a axis and so the saddle point contribution will

use the original 51 definition. Now consider ab in region 3. Similar

arguments to those for ab in region 1 apply and the conclusion is that,

again, for ab in region 3 the original value of B1 is correct for the

saddle point contribution.

We now consider ab in region 2 and must consider regions 2A and 2B

separately. Consider first aX b in region 2B. When we examinp Figure

A.4.a, it is clear that the original hyperbola will cross the ray from

the origin through -k at some point beyond -k2. Therefore in the a

plane it must cross the line u = -(TT/2) for some point v < 0 and curve

down into region 3. At this point we consider the SDP b for ab in region

2B. Referring back to Section C.2, if we consider the derivative

(dv/du) of (C.2.1) and set it to zero, we have

=d -'). tan(u-us) + k21tanh(v) (C.3.2a)

du k 2rtanh(v) - k2 1tan(u-u) =

phase
contour

which gives

k2rtan(u-us) - 21tanh(v )  (C.3.2b)

We note that this equation is identical to (A.2.2) with the exception

that the intersection with the real a axis occurs at u - u . Hence the
S

locus of zero tangent lines to the constant phase contours lies on the

image of the imaginary kx axis mapping shifted to u = us and when

us -(0/2) this locus can be shown to map back into the k plane as thes x



196

extension of the hyperbolic branch cut through -k2 which is asymptotic

to the negative real k axis. This implies that the boundary betweenx

regions 2A and 2B in the a plane (which is the extension of the hyper-

bola going through -k2 in the kx plane) is the locus of zero slope for

all the phase contours with y < -k2r and us = -(1/2). Hence we are guar-

anteed that the SDPb will go into region 3 and that in the course of de-

forming to it we will not cross the saddle point. So for bin region 2B

we also have that the original a1 definition is correct.

Finally we must consider ab in region 2A, a more difficult case.

We note that the original hyperbolic branch cut will now cross the

saddle point locus (Figure A.4.a) in all cases. Specifically we will

assume that the original B hyperbola crosses the real x axis at a - ucr

where -(iT/2) < u < 0. Consider the behavior of the SDPb as u movescr b s

from u - 0 to u = -(iT/2). We recognize that gi-en ab there is a unique

value u - usbspecified by (C.2.2) for the saddle point at which the SDP

through the saddle point usb crosses the branch point Cb1 It is clear

that for u > max(u cr U sb) , the saddle point moves on the original top

sheet of Now, if Us= U sb' the SDP b must lie on the SDP through usb

and run to v - -m. For simplicity, we will deform the cut to this lo-

cus initially, recognizing that in the process all values of u < u cr on

the real a axis enforce the lower sheet value of the original hyperbolic

definition of Now as us proceeds from u - 0 to u - -(nr/ 2), it will

run into either ucr or u sb. If it encounters usb first there is no ef-

fect on since the SDP b must curve below the real a axis until the SAP

crosses ab. Therefore only top sheet values of 61 will be achieved until
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u s reaches either ucr or the value of us at which the SAP crosses oc,

referred to as usap. Assume that usap < u cr' then for usap < u5 < u cr,

the lower sheet value of B1 is correct. Since for all u s < usap the SDPb

must lie to the right of the saddle point, we must use the top sheet value

of as the deformation from the original a, branch cut to the SDPb will not

cross the saddle point. Therefore for the case where usap < U , we have

the following:

<u

+0 u <u u h e- uO (C3

1 orig cr - s

1 - (Yiorig - uSAP  _< us< Ucr where - < u s <  0 (C.3.3)

+01)orig , us < SAP

Now we assert that usap < u cr for all cases. This can be seen from

a somewhat heuristic argument based on Figure A.3. Clearly the possible

exceptional points must occur in the triangle in Figure A.3.a bounded by

the lines 1, 4 and the real kX axis, since branch points outside this

region (but in region 2A) will not have Usa p > -(r/2). But observe that

the SAP in A.3.b maintains a constant acute angle from the saddle point

with respect to line 1. Since the mapping (kx- k 2sin a) is conformal

except at ci- -(ir/2), this angle is maintained in the k plane withx

respect to line 1. However the 81 hyperbola clearly has a tangent line

at the intersection with line 1 which maintains a greater angle (usually

obtuse) with respect to line 1. This angle must be maintained in the O

plane. But both the original $1 hyperbola and the SDPb must originate
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at ab, so clearly usa p < Ucr.

Summarizing the results for the value of B1 to be used for the

saddle point contribution, when the effect of the deformation of the

branch cut to the SDPb is included, we have:

For ab in regions 1,2B and 3: Use B1 +(81)original.

(C.3.4)

For yb in region 2A: Use a,- (C.3.3).

Now we consider the effect of the deformation on the geometrical

optics pole (GOP). We recognize that the locus of the pole is a straight

line in the kx plane connecting -k1 with the origin. Consider the case

where ab is in region 1. Examining Figure A.4.a, we see that the

hyperbolic branch cut and the GOP locus intersect only at the branch

point, -kI. Considering Section A.7 and examining Figure A.5 (which de-

picts the curvature of the locus of the geometrical optics pole in the

OL plane), we see that the same will be true for the SDPb , which must run

up from ab to v + . Therefore the GOP locus will not be crossed duringA the deformation of the $1 branch cut to the SDPb when ab is in region 1

and hence the original top sheet definition of B1 is correct. A similar

analysis is seen to apply for ab in region 2. Finally we consider ab in

region 3. As mentioned above all GOP locus lines will cross the boundary

line between regions I and 3. Also we know that for ctb in region 3 the

deformed SDP cut must stay in region 3. Regarding the original hyper-

bolic branch cut for 01, we see from Figure A.4.a that it does not cross

the GOP locus and in deforming to the SDPb(which lies totally in region

-_______________
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3) that it will not cross the locus. Therefore for ab in region 3, the

original top sheet value of is correct. Collecting these results for the

GOP contribution, we see that the original value for 8 will always apply.

Having established these rules for choosing the value of $ when

evaluating the asymptotic contribution of each singularity, we see that

they are amenable to implimentation during numerical evaluation of the

far fields in a problem.

C.4 Effect of the 8 Branch Cut Deformation on the Root of G (k)

We begin by determining under what situations the root of G (kx ),
-x

is exposed in the deformation of the 8 branch cut to the SDPb and is

crossed by the deformation of the integration path to the SDP through

the saddle point. We utilize the same division of the a plane as pre-

sented in Section A.7 (that is, into regions 1,2 and 3). In addition

we need the following terminology:

a M u+jv

b - ut+JVb *s the branch point in the a plane such that
-k1 k2sina.

a or u is the value of the saddle point (-(ir/2)< us< 0).S -

or a u0+Jv 0 is the root of G_(kx).

1sb or u e is the value of the saddle point such that the SDP
iftersects a.

O or u is the value of the saddle point such that the SDP
inPersects o0

=- u +jv refers to points on the connecting line between
X Aor 1on a kconn
kx =-k I and - 2 (discussed in Section A.8).

L _
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y(ou ) refers to the value of the phase function (C.2.1)

We recognize that the branch cut for 82 in the second quadrant of

the k plane exists in both the exponential factor of the integrand ofx

the field integral and in the denominator factor G_(k x), while the

branch cut exists only in G_(kx). Therefore we can view the branch

cut as deforming from the original hyperbolic locus to overlay the hyper-

bola as depicted in Figure C.3.a. In the CL plane the configuration will

appear as in Figure C.3.b (shown for atb in region 3). We will take this

as our initial 81 branch cut configuration since we are guaranteed by the

analysis of Section 3.4 that no roots of G_ will occur on the top sheet.

For all values of the saddle point such that usb < us, there will be no

roots crossed in deforming to the SDP. We know that the root of G lies

somewhere in the region Re(k ) > 0 and the point at issue is whether it

is exposed on the top sheet and crossed in deforming the integration path.

We also know that for a root to be crossed by the integration path,

-(Tr/2) < us < usO

Consider ab in region 1. When us < Ub then the SDPb must run up

to v a + oo. Since the initial branch cut for 8 also runs to v -+

along the SDP through a - -(Or/2), it is clear that any root a with

v0 < 0 will never be brought to the top sheet and can therefore be ig-

nored. We assume now that v0 > 0. We now observe that the root a must

lie to the left of the SDP through sb and ab. Since all SDP b contours

lie to the left of this boundary line, any root which may be exposed in

the branch cut deformation must lie to the left of this curve. Hence we
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have -that U so<Usb in order for a0o be exposed at all. The one excep-

tion to this is if the connection line from -k1 to -k2 of the initial,

root-free top sheet configuration is indented below the SDP through asb

and the root a0 lies in this indention. (Note that the connection line

has positive curvature and positive slope). If this is the case then

for all u s < the root will be both exposed and crossed by the SDP

through us . See Figure C.4. This is due to the fact that for us < uso,

the branch cut for 1 which initially coincides with the connection line

must deform to coincide with the SDP (which goes through a0). Further

movement of u toward u - -(/2) will force the branch cut to expose the
s

root which is clearly crossed by the integration path deforming to the

SDP through u since u < U 0 . Once u < usb' the SDP deforms up
s s ss s b

toward v - += and the root will continue to be exposed as u progresses
S

to -(Or/2).

Continuing the analysis for ab in region 1, we consider that

u so < Usb so that the root may be exposed. If a0 lies to the left of

the curve defined by the connection from -kI to -k2 and the SDPb running

from ab to v - +-(See Figure C.5), then the root has been exposed on

the top sheet (and crossed by the integration path since us 
< UsO).

Otherwise the root is not exposed and does not contribute.

Consider c.b in region 2. We again note that unless uso < Usb the

root cannot be exposed and there is no exception this time as the

connection line has positive curvature and negative slope. See Figure

C.6. Now for a.b in region 2 it is possible for the SDPb to go to

v - ± depending on whether yb = Y(o), the phase function for the phase



203

Vb

ab REGION OF EXPOSED
AND SWEPT ROOTS

LINE

Usb AND ab

Figure C.4. Possible region of exposed roots of G_
in the a plane.
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contour through OLb, is < -k2r Assume first that Yb< -k so that the

SDPb curves down to v -o. Clearly if v0 > 0, then the root is never

exposed. Assume v0 < 0. Then a possible situation is shown in Figure

C.7. If 10 lies between the curves defined by the lower leg of the SDP

through a - -(0/2), the connection line from -(iT/2) to ccb and the SDPb,

then c0 is exposed (and crossed since us < uSO).

Consider the same situation as that discussed in the paragraph

above but with -k2r < Yb <0, so that the SDPb runs up. to v + . Then

we may encounter into the situation shown in Figure C.8. As for the

case when yb < -k2r, we find that if C0 lies between the upper leg of

the SDP through L = -(O/2), the connection line and the SDPb , then aO

is exposed.

Finally we consider a0 in region 3. We saw in Section A.8 that the

slope and curvature of the connection line was given by Table A.2. If

we consider sets of these curves we arrive at Figure C.9. We observe,

in particular, that it is possible for ab to lie in region 3 and have

its connection line appear in region 1. This is of particular signif-

icance since the SDPb loci must lie completely in region 3. Therefore

if a root appears in region I between the connection line and the SDP

through -(0/2), it is exposed and crossed for u s < us0 otherwise, if

vo >.0, the root is never exposed. Now assume that the root has v0 < 0.

Assuming that u <Ub so that the branch cut has deformed from the
S s

initial position to the SDPb and exposed a portion of the lower sheet of

G-, then any root in the region bounded by the lower portion of the SDP

through -(0/2), the connection between -(fl/2) and Otb, and the SDPb will

lb

Ii __ _ __ _ _,_ _ _ __ _
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be exposed and crossed (since < us

We can summarize the results of this analysis in a manner amenable

to implementation on a computer. We accept the following definitions:

u is the given saddle point value

Uso is the saddle point value for which the SDP runs through c, the
root of interest.

(u b'V b): ub+jVb' % is the branch point for kx -kI .

(U0 3v0 ): Ct0 - u0+jv0, c0 is the root of interest.

Ub is the saddle point value for the SDP running through cb"

4 Yb is the value of the phase function for % and u

v SDP D through u = -7; for u0  2

7T
If >- - J V o ovalue on connection curve; for -1<u0<ub

[if u> (7/2)] vcon' 7Tto0

V SDP , SDP through ab; for ub < u0

con SDP through u =- for u
VSDP, g 2  2o 7  u

[if 'ub < - (7/2)) - Vconn; for 2

vSDP' SDP through 0*b; for u0 < ub
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U ,on SDFb; for vb < v

SDPDb
bbU SDPb (vO 0-

Ub fixed; for v0 <vb

S SDP through ctb; U < u0

VSDP b~ (Uo) VSDPb , on SDPb; for ush ub

-0 ; for u0 < (Ub -

im ( V (7 Uo

con(Uo) -0o (-co - 0

V conU) ; for ub < u0

test (uO)

V , on SDPb ; for u0 <
SDP b b0<

?..
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We enumerate the following inequalities which will be use in the

logical constructions of the flowchart derived from the earlier

analysis:

a. - <u g. v >v m. v O>v i n
2 s0 con 0 con

b. < h. u<u n. u <u
us 0 SDPb s sb

C. v b > 0 . b > 2 r  o. v v t e s t

* d. ub j. Vco<V<vSDP

e. v0 > 0 k. v SDPb<VO<v c o n

so- usb 0 > USDPb

We can then organize the logic of this section into the flowchart

shown in Figure C.10. The question concerning the value of to be

used in the residue contribution of the root of G does not arise

because the form of the contribution (Section B.5) implicitly includes

the correct value of due to (B.5.3).

* 4 gi



213

o4,
XU) z

-. 0

co

V a
cc W

wl 0

c cc

4, -4

u 0

24.0 a x

cc 0

cc4 4

cc c

0 0v
cc--4cc '- -=4

o 0 0
4, -4 - I

02 00 43
:r 3a C

.0 Gc

'a - J



APPENDIX D

BEHAVIOR OF THE GREEN'S FUNCTION IN THE SLAB PROBLEM

In this appendix the behavior of the Green's function for the slab

problem is considered when the media are lossless, have the same permea-

bility and the slab has a greater permittivity than the surrounding

medium (C > cj). The Green's function is given in (5.2.6) and we

consider here the functional form, F(k2, given in (5.2.7). In normal-

ized coordinates, we have

[ F -j ~ ' _ B~'
-.I(I 2ej~t' ' '(0 L a-8.e ; _ (s {+l. )e 

(D.1)

F"(,,W) 2'. jefty (D.'1)
(a %- 2e

1t i),2' + (ai ,t'] + 20t'c 0t()0't')

(D.2)

i
The slab is taken to have thickness t' (expressed in normalized coordi-

nates, t = t' k0 ). Also the normalized permeability is equal to 1, so
J2

k 2 61. Only the roots and poles of the expression in brackets need be

215
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discussed in detail, so the factor i will be ignored. We follow the

analysis of Barone (1956) and give the results for our formulation in

the present notation.

Consider the roots of the numerator of (D.2),

jBt + B2t cotB2 t - 0 . (D.3)

Letting a t W 2j+jv and z =- x+jy, then (D.3) becomes

W - jz cotz * (D.4)

We recognize that
S2_2 2 2t2=F 2 a 2 (D5

- (k2-kl)t - (e2-C1 )t
2  a (D.5)

where a > 0. Analyzing (D.4) and (D.5) together allows for the locus of

the roots as a function of (a) to be determined. It can be shown that

all the roots reside on the lower sheet except for a finite number which

must lie between k and k2 on the real k axis (and their images which

lie between -k2 and -k1 on the negative real axis). Determining the

location of the roots requires solving the equations,

x2 + v 2 0 a2  (D.6)

and

v = ± a cos(x) such that v < 0, simultaneously. (D.7)

This can be thought of graphically as shown in Figure D.1, where the

locus defined by (D.6) is shown as a circle of radius a and (D.7) is
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Figure D.l. Graphic determination of the roots
of the numerator of the function F
in the slab problem. Roots of
x *±a sin xc
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shown for v < 0. Alternatively, the roots of

x - ± a sin(x) (D.8)

can be determined (clearly IxI < a) and then (D.7) gives v. It is

evident from Figure D.1 that no roots occur until a > (Tr/2). This

being the case, there will be n roots on the interval (kl, k2), where n

is the integer portion of (a/T + 1/2).

The roots of (D.3) are seen to correspond to the surface waves of a

dielectric slab waveguide of thickness t with one surface covered by a

PEC screen (that is, the so-called short circuit bisection problem). It

is shown in the asymptotic analysis for the transmitted region (y < -t)

that the roots give rise to surface waves propagating in the positive x

direction from the edge of the PEC screen. It is no surprise that

these surface wave roots are the same as the surface wave roots of the

slab structure since for x > 0, the configuration is coincident with

that of the short circuit bisection problem.

Consider now the roots of the denominator of F(k ),

-JBt (D.9

(8i-8 2)
2 e 2- (l+82e - 0 (D9)

After some manipulation this reduces to two families of roots,

81 t 82 t [-2t)
1 2i-- cot (D.l0.a)

and

1a t 2 -L (D. lO.b)
2 n- _'J tan[2t

1'
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Comparing (D.10.a) with (D.3), it is clear that an identical analysis

applies using (t/2) rather than t. In particular, from (D.5) we see

that a becomes b- (a/2). Therefore we have no roots until a 7T and

then n roots such that n is the integer portion of (b/t + 1/2). These

roots solve (D.6) and (D.7) or (D.8) with the appropriate adjustment in

t and a. From the earlier discussion, it is clear that these poles

correspond to the short circuit bisection problem for a slab of thick-

ness (t/2). Thus these waves have an odd functional behavior with

respect to the center of the slab.

Examining (D.10.b), it can be shown that using (i t/2) w and

(B2 t/2)-z,the equation can be reduced to

- -Jz tan(z) (D.1l.a)

and

z2 -i -b 2 - (C2-E1) (D.1l.b)

Hence the respective real and imaginary parts of the roots satisfy

x2 +v 2  b2  (D.12.a)

and

v - ± b sin(x) , (D.12.b)

or

x T ; b cos(x) (D.13)
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The graphical depiction of (D.12) is shown in Figure D.2. Observe that

this pole does not suffer a cutoff for b < (7/2) unlike the short

circuit waves discussed previously. These waves represent the even

functional waves characterized by the surface waves of a dielectric slab

of thickness t/2 with one surface covered by a perfectly magnetically

conducting screen (the open circuit bisection problem for a slab of

thickness t/2).

By combining the functions shown in Figures D.1 and D.2, it can be

shown that as a (which equals /E - 1 t ) increases from zero, the

following sequence of roots and poles appears on the interval (kl, k2)

of the real k axis (and by symmetry, on the interval (-k2, -kl)).

First, a pole emerges from k1 and moves toward k2 as a increases to (7T/2).

For a > (7/2), a root then emerges and follows the preceding pole

toward k2. Then when a reaches IT, a second pole emerges from k1 and

moves toward k 2. This alternation between poles and zeros is seen to

continue as a increases. This progression of roots is shown in Figure

5.2 which describes the behavior of the logarithm of the Green's func-

tion of the slab problem.

i
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